, Volume 47, Issue 6, pp 542–548 | Cite as

Microbial legradation of bitumen

  • M. Wolf
  • R. Bachofen
Multi-author Review Microorganisms in nuclear waste disposal Part II


Bitumen is commonly employed as a matrix for the long-term storage of low and intermediate level radioactive waste. As bitumen can be degraded by microbial activity, it is of great significance to determine the rates at which it may occur in nuclear waste repositories.

Experiments have been carried out under optimal culture conditions using bitumen with a highly increased surface area. The potential of different microbial consortia to degrade bitumen has been examined. The investigations showed clearly that bitumen-degrading organisms are ubiquitous. In general the organisms formed biofilms on the accessible substrate surface area. Under oxic culture conditions a bitumen degradation rate of 20–50 g bitumen · m−2· y−1 leading to a CO2 liberation of 15–40 l was observed. Anoxic conditions yielded a 100 times smaller degradation rate of 0.2–0.6 g bitumen · m−2 · y−1 and a CO2 production of 0.15–0.45 l.

Based on linear extrapolation the experimentally determined degradation rates would lead to a 25–70% deterioration of the bitumen matrix under oxic and 0.3–0.8% under anoxic conditions within 1000 years.

Key words

Bitumen microbial activity biofilm degradation gas production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atlas, R. M., Microbial degradation of petroleum hydrocarbons, and environmental perspective. Microbiol. Rev.45 (1981) 180–209.PubMedGoogle Scholar
  2. 2.
    Audus, L. J., A new soil perfusion apparatus. Nature158 (1946) 419.Google Scholar
  3. 3.
    Barletta, R. E., Bowerman, B. S., Davis, R. E., and Shea, C. E., Biodegradation Testing of Bitumen. Department of Nuclear Energy, Brookhaven National Laboratory, Upton, New York, Report BNLNUREG-38999, 1986.Google Scholar
  4. 4.
    Brodersen, K., Pedersen, B. M., and Vinther, A., Comparative Study of Test Methods for Bituminized and Other Low- and Medium-level Solidified Waste Materials. Riso National Laboratory, Roskilde, Denmark, Report Riso-M-2415, 1983.Google Scholar
  5. 5.
    Brunner, C., Wolf, M., and Bachofen, R., Enrichment of bitumen-degrading microorganisms. FEMS Microbiol. Lett.43 (1987) 337–344.CrossRefGoogle Scholar
  6. 6.
    Burgess, S. F., Action of microorganisms on petroleum-asphalt fractions. Highway Res. Board Bull.118 (1956) 27–48.Google Scholar
  7. 7.
    Cooper, D. G., and Zajic, J. E., Surface-active compounds from microorganisms. Adv. appl. Microbiol.26 (1980) 229–253.Google Scholar
  8. 8.
    Cooper, D. G., Zajic, J. E., Gerson, D. F., and Manninen, K. E., Isolation and identification of biosurfactants produced during anaerobic growth ofClostridium pasteurianum. J. Ferment. Techn.58 (1980) 83–86.Google Scholar
  9. 9.
    Cooper, D. G., Biosurfactants and enhanced oil recovery, in: Proceedings of International Conference on Microbial Enhancement of Oil Recovery, pp. 112–114. Eds E. C. Donaldson and J. B. Clark. Bartlesville, Oklahoma, USA 1983.Google Scholar
  10. 10.
    Dagen, A., Wirkung ionisierender Strahlung auf Bitumen und Bitumen-Salz-Gemische. Staatliches Amt für Atomsicherheit und Strahlenschutz, Report SAAS-253, 1980.Google Scholar
  11. 11.
    Drent, W., Effects of Microorganisms on Bituminous Materials. A Literature Review. European Company for the Chemical Processing of Irradiated Fuels, Mol, Belgium, Technical Report 275, 1972.Google Scholar
  12. 12.
    Elektrowatt, Verfestigung radioaktiver Abfälle mit Bitumen. Nagra Technischer Bericht 85–28, 1985.Google Scholar
  13. 13.
    Eschrich, H., Properties and Long-term Behaviour of Bitumen and Radioactive Waste-bitumen Mixtures. Eurochemie, Mol, Belgium, KBS Technical Report 80–14 1980.Google Scholar
  14. 14.
    Grula, E. A., Russell, H. H., Dryant, D., Kenaga, M., and Hart, M., Isolation and screening of Clostridia for possible use in microbial enhanced oil recovery, in: Proceedings of International Conference on Microbial Enhancement of Oil Recovery, pp. 43–47. Eds E. C. Donaldson and J. B. Clark. Bartlesville, Oklahoma, USA 1982.Google Scholar
  15. 15.
    Harris, J. O., Asphalt oxidizing bacteria of the soil. Ind. Eng. Chem.58 (1966) 65–69.CrossRefGoogle Scholar
  16. 16.
    Harris, J. O., Kline, R. M., and Crumpton, C. F., A study of the presence of hydrocarbon utilizing bacteria at the soil asphalt interface of Kansas highways. Trans. Kansas Acad. Sci.59 (1956) 495–499.Google Scholar
  17. 17.
    Hellmuth, K. H., Natural Analogues of Bitumen and Bituminized Radioactive Waste. Finnish Center for Radiation and Nuclear Safety, Helsinki. Report STUK-B-VALO 58, 1989.Google Scholar
  18. 18.
    Hellmuth, K. H., The Long-term Stability of Natural Bitumen. Finnish Center for Radiation and Nuclear Safety, Helsinki. Report STUK-B-VALO 59, 1989.Google Scholar
  19. 19.
    Hietanen, R., Alaluusua, M., and Jaakkola, T., Sorption of Cesium, Strontium, Iodine, Nickel and Carbon in Mixtures of Concrete, Crushed Rock and Bitumen. University of Helsinki, Dept. of Radiochemistry, Report YJT-85-38, 1985.Google Scholar
  20. 20.
    Hundeshagen, F., Behaviour of asphalt, bitumen, and coaltar pitch toward microorganisms. Bautenschutz6 (1935) 141–142.Google Scholar
  21. 21.
    Jones, T. K., Effect of bacteria and fungi on asphalt. Material Protect.4 (1965) 39–43.Google Scholar
  22. 22.
    Kluger, W., Hild, W., Köster, R., Meier, G., and Krause, H., Bituminierung radioaktiver Abfallkonzentrate aus Wiederaufbereitung, Kernforschungseinrichtungen und Kernkraftwerken. Kernforschungszentrum Karlsruhe, Report KfK 2975. 1980.Google Scholar
  23. 23.
    Körner, W., and Dagen, A., Sicherheitstechnische Untersuchungen zur Bituminierung radioaktiver Abfälle. Staatliche Zentrale für Strahlenschutz, Report SZS-8/71, 1971.Google Scholar
  24. 24.
    Kulman, F. E., Microbial deterioration of buried pipe and cable coatings. Corrosion14 (1958) 213–222.Google Scholar
  25. 25.
    Neumann, H. J., Bitumen und seine Anwendung. Expert Verlag, Grafenau 1980.Google Scholar
  26. 26.
    Ourisson, G., Albrecht, P., and Rohmer, M., Der mikrobielle Ursprung fossiler Brennstoffe. Spektr. Wiss. Oct. (1984) 54–64.Google Scholar
  27. 27.
    Peltonen, P., and Niemi, A., Storage Stability of Bituminized Reactor Wastes. Technical Research Centre of Finland, Research Report 226, 1983.Google Scholar
  28. 28.
    Pendrys, J. P., Biodegradation of asphalt cement-20 by aerobic bacteria. Appl. envir. Microbiol.55 (1989) 1357–1362.Google Scholar
  29. 29.
    Poll, H., Aus der Geschichte des Bitumen. Bitumen-Teere-Asphalte-Peche und verwandte Stoffe13 (1962) 571–574.Google Scholar
  30. 30.
    Roffey, R., Hjalmarsson, K., and Norqvist, A., Microbial Degradation of Bitumen used for Encapsulating Radioactive Waste. Final Report. National Defense Research Institute, Umea, FOA Report C 40238-4.9, 1987.Google Scholar
  31. 31.
    Smailos, E., Diefenbacher, W., Korthaus, E., and Comper, W., Berechnungen zur Radiolysegasbildung und Wärmeentwicklung bei der Einlagerung von radioaktiven Bitumen- und Zementprodukten in unterirdischen Lagerräumen. Kernforschungszentrum Karlsruhe, Report KFK 2076, 1978.Google Scholar
  32. 32.
    Snellman, M., and Valkiainen, M., Long-term Properties of Bituminized Waste Products. Summary Report of the Nordic AVF-2 Project. Nordic liaison committee for atomic energy, Report INIS-10139, 1985.Google Scholar
  33. 33.
    Traxler, R. W., Proteau, P. R., and Traxler, R. N., Action of microorganisms on bituminous materials. Effect of bacteria on asphalt viscosity. Appl. Microbiol.13 (1965) 838–841.PubMedGoogle Scholar
  34. 34.
    Valkiainen, M., and Vuorinen, U., Properties of bituminiztion products from the Olkiluoto power plant, in: Radioactive Waste Products-Suitability for Final Disposal. Proceedings pp. 399–413. Eds E. Merz, R. Odoi, and E. Warnecke. Kernforschungsanlage Jülich G.m.b.H. Germany, Report Juel-Conf-54, 1985.Google Scholar
  35. 35.
    Westsik, J. H. Jr, Buschbom, R. L., Divine, J. K., Harvey, C. O., Lokken, R. O., Pelroy, R. A., Stewart, D. L., Tloste, A. P. and Treat, R. L. Characterization of Cement and Bitumen Waste Forms Containing Simulated Low-level Waste Incinerator Ash. Pacific Northwest Laboratory, Richland, Massachusetts, Report NUREG/CR-3798, 1984.Google Scholar
  36. 36.
    Wolf, M., and Bachofen, R., Microbial degradation of bitumen matrix used in nuclear waste repositories. (1991) in press.Google Scholar
  37. 37.
    Wiborgh, M., Höglund, L. O., and Pers, K., Gas Formation in a L/ILW Repository and Gas Transport in the Host Rock. Nagra Technical Report 85-17, 1986.Google Scholar
  38. 38.
    Zeger, J. and Knotik, K., Untersuchungen zur thermischen Belastbarkeit von Bitumen-Salz-Gemischen. J. nucl. Eng. Sci.4 (1977) 188–195.Google Scholar
  39. 39.
    ZoBell, C. E., Action of microorganisms on hydrocarbons. Bact. Rev.10 (1946) 1–49.Google Scholar
  40. 40.
    ZoBell, C. E., and Molecke, M. A., Survey of microbial degradation of asphalts with notes on relationship to nuclear waste management. Sandia Laboratories, Albuquerque, New Mexico, Report SAND-78-1371, 1978.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • M. Wolf
    • 1
  • R. Bachofen
    • 1
  1. 1.Institute of Plant BiologyUniversity of ZürichZürich(Switzerland)

Personalised recommendations