Acta Mathematica Hungarica

, Volume 47, Issue 1–2, pp 165–178 | Cite as

On the optimal Lebesgue constants for polynomial interpolation

  • P. Vértesi


Polynomial Interpolation Lebesgue Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Faber, Über die interpolatorische Darstellung stetiger Funktionen,Jahresber. der Deutschen Math. Ver.,23 (1914), 191–200.Google Scholar
  2. [2]
    S. Bernstein, Sur la limitation des valeurs d'une polynome,Bull. Acad. Sci. de l'USSR. 8 (1931), 1025–1050.Google Scholar
  3. [3]
    P. Erdős, Problems and results on theory of interpolation. II,Acta Math. Acad. Sci. Hungar.,12 (1961), 235–244.Google Scholar
  4. [4]
    P. Erdős, P. Vértesi, On the Lebesgue function of interpolation, Functional Analysis and Approximation ISNM,60 (1981), Birkhauser Verlag, Basel, 299–309.Google Scholar
  5. [5]
    P. Vértesi, New estimation for the Lebesgue function of Lagrange interpolation,Acta Math. Acad. Sci. Hungar.,40 (1982), 21–27.Google Scholar
  6. [6]
    P. Vértesi, On sums of Lebesgue function type,—ibid,40 (1982), 217–227.Google Scholar
  7. [7]
    T. A. Kilgore, A characterization of the Lagrange interpolation projections with minimal Tchebycheff norm,J. Approximation Theory,24 (1978), 273–288.Google Scholar
  8. [8]
    C. De Boor, A. Pinkus, Proof of the conjectures of Bernstein and Erdős concerning the optimal nodes for polynomial interpolation,—ibid,24 (1978), 289–303.Google Scholar
  9. [9]
    F. W. Luttmann, T. J. Rivlin, Some numerical experiments in the theory of polynomial interpolation,IBM J. Res. Develop.,2 (1965), 187–191.Google Scholar
  10. [10]
    L. Brutman, On the polynomial and rational projections in the complex plane,SIAM J. Numer. Anal.,17 (1980), 366–372.Google Scholar
  11. [11]
    L. Brutman, A. Pinkus, On the Erdős conjecture concerning minimal norm interpolation on the unit circle,—ibid,17 (1980), 373–375.Google Scholar
  12. [12]
    H. Ehlich, K. Zeller, Auswertung der Normen von Interpolationsoperatoren,Math. Ann.,164 (1966), 105–112.Google Scholar
  13. [13]
    P. N. Shivakumar, R. Wong, Asymptotic expansion of the Lebesgue constants associated with polynomial interpolation,Math. Comp.,39 (1982), 195–200.Google Scholar
  14. [14]
    V. K. Dzjadik, V. V. Ivanov, On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points,Anal. Math.,9 (1983), 85–97.Google Scholar
  15. [15]
    L. Brutman, On the Lebesgue function for polynomial interpolation,SIAM J. Numer. Anal.,15 (1978), 694–704.Google Scholar
  16. [16]
    N. A. Pogodiceva,Certain linear processes, Doctorial dissertation, Dnepropetrovsk, 1956 (Russian).Google Scholar
  17. [17]
    A. F. Timan,Approximation of functions of real variable, Fizmatgiz, 1960 (Russian).Google Scholar
  18. [18]
    R. Günttner, Evaluation of Lebesgue constants,SIAM J. Numer. Anal.,17 (1980), 512–520.Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • P. Vértesi
    • 1
  1. 1.Mathematical Institute of theHungarian academy of SciencesBudapestHungary

Personalised recommendations