Acta Mathematica Hungarica

, Volume 47, Issue 1–2, pp 165–178 | Cite as

On the optimal Lebesgue constants for polynomial interpolation

  • P. Vértesi


Polynomial Interpolation Lebesgue Constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Faber, Über die interpolatorische Darstellung stetiger Funktionen,Jahresber. der Deutschen Math. Ver.,23 (1914), 191–200.Google Scholar
  2. [2]
    S. Bernstein, Sur la limitation des valeurs d'une polynome,Bull. Acad. Sci. de l'USSR. 8 (1931), 1025–1050.Google Scholar
  3. [3]
    P. Erdős, Problems and results on theory of interpolation. II,Acta Math. Acad. Sci. Hungar.,12 (1961), 235–244.Google Scholar
  4. [4]
    P. Erdős, P. Vértesi, On the Lebesgue function of interpolation, Functional Analysis and Approximation ISNM,60 (1981), Birkhauser Verlag, Basel, 299–309.Google Scholar
  5. [5]
    P. Vértesi, New estimation for the Lebesgue function of Lagrange interpolation,Acta Math. Acad. Sci. Hungar.,40 (1982), 21–27.Google Scholar
  6. [6]
    P. Vértesi, On sums of Lebesgue function type,—ibid,40 (1982), 217–227.Google Scholar
  7. [7]
    T. A. Kilgore, A characterization of the Lagrange interpolation projections with minimal Tchebycheff norm,J. Approximation Theory,24 (1978), 273–288.Google Scholar
  8. [8]
    C. De Boor, A. Pinkus, Proof of the conjectures of Bernstein and Erdős concerning the optimal nodes for polynomial interpolation,—ibid,24 (1978), 289–303.Google Scholar
  9. [9]
    F. W. Luttmann, T. J. Rivlin, Some numerical experiments in the theory of polynomial interpolation,IBM J. Res. Develop.,2 (1965), 187–191.Google Scholar
  10. [10]
    L. Brutman, On the polynomial and rational projections in the complex plane,SIAM J. Numer. Anal.,17 (1980), 366–372.Google Scholar
  11. [11]
    L. Brutman, A. Pinkus, On the Erdős conjecture concerning minimal norm interpolation on the unit circle,—ibid,17 (1980), 373–375.Google Scholar
  12. [12]
    H. Ehlich, K. Zeller, Auswertung der Normen von Interpolationsoperatoren,Math. Ann.,164 (1966), 105–112.Google Scholar
  13. [13]
    P. N. Shivakumar, R. Wong, Asymptotic expansion of the Lebesgue constants associated with polynomial interpolation,Math. Comp.,39 (1982), 195–200.Google Scholar
  14. [14]
    V. K. Dzjadik, V. V. Ivanov, On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points,Anal. Math.,9 (1983), 85–97.Google Scholar
  15. [15]
    L. Brutman, On the Lebesgue function for polynomial interpolation,SIAM J. Numer. Anal.,15 (1978), 694–704.Google Scholar
  16. [16]
    N. A. Pogodiceva,Certain linear processes, Doctorial dissertation, Dnepropetrovsk, 1956 (Russian).Google Scholar
  17. [17]
    A. F. Timan,Approximation of functions of real variable, Fizmatgiz, 1960 (Russian).Google Scholar
  18. [18]
    R. Günttner, Evaluation of Lebesgue constants,SIAM J. Numer. Anal.,17 (1980), 512–520.Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • P. Vértesi
    • 1
  1. 1.Mathematical Institute of theHungarian academy of SciencesBudapestHungary

Personalised recommendations