Acta Mathematica Hungarica

, Volume 47, Issue 1–2, pp 95–107 | Cite as

Embedding and compactness theorems for irregular and unbounded domains in weighted Sobolev spaces

  • S. Salerno
  • M. Troisi
Article
  • 59 Downloads

Keywords

Sobolev Space Unbounded Domain Compactness Theorem Weighted Sobolev Space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. A. Adams,Sobolev spaces, Academic Press (1971).Google Scholar
  2. [2]
    A. Avantaggiati,On compact embedding theorems in weighted Sobolev spaces, Nonlinear analysis, function spaces and applications, Proc. Spring School (Horni Bradlo, 1978).Google Scholar
  3. [3]
    V. Benci and D. Fortunato, Some compact embedding theorems for weighted Sobolev spaces,Boll. U.M.I. (5)13-B (1976), 832–843.Google Scholar
  4. [4]
    M. S. Berger and M. Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains,Trans. Amer. Math. Soc.,172 (1972), 261–278.Google Scholar
  5. [5]
    S. Campanato, Il teorema di immersione di Sobolev per una classe di aperti non dotati della proprietà di cono,Ric. di Mat.,II (1962), 103–122.Google Scholar
  6. [6]
    D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains,Ann. Sc. Norm. Sup. di Pisa,27,2 (1973), 591–640.Google Scholar
  7. [7]
    E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili,Ric. di Mat.,8 (1959), 24–51.Google Scholar
  8. [8]
    S. Matarasso and M. Troisi, Teoremi di compattezza in domini non limitati,Boll. U.M.I., (5),18-B (1981), 517–537.Google Scholar
  9. [9]
    C. Miranda, Su alcune disuguaglianze integrali,Atti Acc. Lincei, (8),7 (1973), 1–14.Google Scholar
  10. [10]
    B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals,Trans. Amer. Math. Soc.,192 (1974), 261–274.Google Scholar
  11. [11]
    L. Nirenberg, On elliptic partial differential equations, Lecture II,Ann. Sc. Norm. Sup. di Pisa,13 (1959), p. 123–131.Google Scholar
  12. [12]
    G. Stampacchia,Sur des espaces de fonctions qui interviennent dans les problèmes aux limites elliptiques, Colloque sur l'Analyse Fonctionnelle (Louvain, 1960).Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • S. Salerno
    • 1
  • M. Troisi
    • 1
  1. 1.Istituto di Matematica Facoltà di ScienzeUniversity of SalernoSalernoItaly

Personalised recommendations