Advertisement

Acta Mathematica Hungarica

, Volume 48, Issue 1–2, pp 59–66 | Cite as

Periodic solutions of second order nonlinear differential equations

  • J. J. Nieto
  • V. Sree Hari Rao
Article

Keywords

Differential Equation Periodic Solution Nonlinear Differential Equation Order Nonlinear Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. R. Bernfeld and V. Lakshmikantham,An Introduction to Nonlinear Boundary Value Problems, Academic Press (New York, 1974).Google Scholar
  2. [2]
    L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, Proc. Conf. onNonlinear Functional Analysis and Differential Equations, (Eds. Cesari, Kannan and Schuur), Marcel Dekker, Inc., (New York, 1976), 1–197.Google Scholar
  3. [3]
    L. Cesari and R. Kannan, An abstract theorem at resonance,Proc. Amer. Math. Soc.,63 (1977), 221–225.Google Scholar
  4. [4]
    J. O. C. Ezeilo, A Leray—Schauder technique for the investigation of periodic solutions of the equation\(\ddot x + x + \mu x^2 = \varepsilon \cos \omega t(\varepsilon \ne 0)\),Acta Math. Acad. Sci. Hungar.,39 (1982), 59–63.CrossRefGoogle Scholar
  5. [5]
    R. Kannan and V. Lakshmikantham, Existence of periodic solutions of nonlinear boundary value problems and the method of upper and lower solutions,Technical Report #173, University of Texas at Arlington, November 1981.Google Scholar
  6. [6]
    T. Maekawa, On a harmonic solution of\(\ddot x + x + \mu x^2 = \varepsilon \cos \omega t\),Math. Japonicae,13 (1968), 143–148.Google Scholar
  7. [7]
    R. Reissig, G. Sansone and R. Conti,Nonlinear Differential Equations of Higher Order, Noordhoff International Publishing (Leyden, 1974).Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • J. J. Nieto
    • 3
    • 4
    • 1
  • V. Sree Hari Rao
    • 3
    • 4
    • 2
  1. 1.Arlington
  2. 2.Ames
  3. 3.Facultad de MatemáticasUniversidad de SantiagoSpain
  4. 4.Department of MathematicsOsmania UniversityHyderabadIndia

Personalised recommendations