Skip to main content
Log in

Stress-induced photon emission from perturbed organisms

  • Multi-author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

This paper reviews an ultraweak luminescent response of selected biological systems (lower and higher plants, insects and spermatozoa) to certain kinds of detrimental mechanical, temperature, chemical and photochemical stress and to lethal factors. The enhancing effect of white light and formaldehyde on the ultraweak luminescence of yeast and spermatozoa cells is described for the first time. An increase in the percentage of long wavelengths (λ>600 nm) with an increase in reaction time, and a significant influence of the suspending medium on the ultraweak luminescence, were observed. The vitality and motility of bull spermatozoa and the vitality of yeast cells were drastically decreased by treatment with white light, water, formaldehyde and iron-ions. Successive irradiation of intact bull spermatozoa cells with white light caused an increase in the intensity of delayed luminescence. An attempt has been undertaken to find stochastic models of non-stationary photon emission. The quasi-relaxation descending stage of non-stationary processes can be modeled as the Integrated Moving Average process IMA (0,1,1), and memory and transfer functions can describe the degree of perturbation in the yeastSaccharomyces cerevisiae. The relation of the ultraweak luminescence response to perturbations of homeostasis is discussed in the framework of biochemical and physical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babko, A. K., and Lukovskaja, N. M., Chemiluminescence Analysis. Tiechnika, Kiev 1966 (Russian).

    Google Scholar 

  2. Babko, A. K., Lukowskaja, N. M., Investigation of catalyst reaction in luminol-copper-hydrogen peroxide system. Ukr. Chim. J.27 (1961) 519–524 (Russian).

    CAS  Google Scholar 

  3. Baraboy, V. A., and Orel, V. E., The effect of certain biogenic amines on triboluminescence and indices of peroxidation in canine blood. Physiol. J.33 (1987) 108–111 (Russian).

    Google Scholar 

  4. Boveris, A., Varsavsky, A. I., Da Silva, S. G., and Sanchez, R. A., Chemiluminescence of soybean seeds: Spectral analysis, temperature dependence and effect of inhibitors. Photochem. Photobiol.38 (1983) 99–104.

    Article  CAS  Google Scholar 

  5. Brzostowicz, A., Grabikowski, E., Murkowski, A., and Prokowski, Z., Luminescent method in investigation of physiological stress in plants, in: Efficiency in Plant Breeding, p. 300, Eds W. Lange, A. C. Zeven and N. G. Hogenboom. Pudoc, Wageningen 1984.

    Google Scholar 

  6. Brzostowicz, A., Grabikowski, E., Murkowski, A., and Prokowski, Z., Use of the delayed luminescence test for evaluation of changes in frost-resistance of winter wheat. Acta agrobot.1 (1985) 116.

    Google Scholar 

  7. Cercek, B., Obremski, R. J., and Oh, C. S., Buffer effects on the triggering of horseradish peroxidase enhanced chemiluminescence, in: Bioluminescence and Chemiluminescence, pp. 195–198. Eds P. E. Stanley and L. J. Kricka. John Wiley and Sons, Chichester 1991.

    Google Scholar 

  8. Dobrowolski, J. W., Ezzahir, A., and Knapik, M., Possibilities of chemiluminescence application in comparative studies of normal and cancer cells with special attention to leukemic blood cells, in: Photon Emission from Biological Systems, Theory and Practice, pp. 170–183. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek, World Scientific, Singapore 1987.

    Google Scholar 

  9. Ezzahir, A., Godlewski, M., Krol, M., Kwiecinska, T., Rajfur, Z., Sitko, D., and Slawinski, I., The influence of environmental factors on the ultraweak luminescence from yeastSaccharomyces cerevisiae. Bioelectrochem. Bioenerg.27 (1992) 57–61.

    Article  CAS  Google Scholar 

  10. Ezzahir, A., Godlewski, M., Kwiecinska, T., Rajfur, Z., Slawinski, J., and Scieszka, K., Photoinduced delayed luminescence from yeastSaccharomyces cerevisiae, in: Biological Luminescence, pp. 173–181. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  11. Ezzahir, A., Rajfur, Z., Ścieszka, K., Sŀawiński, J., Wolańska, P., Photoinduced delayed luminescence from yeast and melanoma ascitic cells. Part I: Excitation with different actinic light. Zagad. Biofiz. Wspolcz.15 (1991) 28–42.

    Google Scholar 

  12. Ezzahir, A., Godlewski, M., Kwiecinska, T., Sitko, D., Slawinski, J., Szczesniak-Fabianczyk, B., and Laszczka, A., Iron-induced chemiluminescence of bull spermatozoa. Appl. Biol. Commun.2 (1992) 139–144.

    Google Scholar 

  13. Ezzahir, A., Godlewski, M., Kwiecinska, T., Sitko, D., Slawinski, J., Szczesniak-Fabianczyk, B., and Laszczka, A., The influence of white light on photo-induced luminescence from bull spermatozoa. Appl. Biol. Commun.2 (1992) 133–137.

    Google Scholar 

  14. Fontes, A. G., Dela Rosa, F. F., and Gomez-Moreno, C., Continuous photochemical production of hydrogen peroxide catalyzed by flavins. Photochem. Photobiophys.2 (1981) 355–364.

    CAS  Google Scholar 

  15. Giese, A. C., and Wells, P. H., Protective effect of glycin on sperm exposed to light. Science115 (1952) 239.

    Article  CAS  PubMed  Google Scholar 

  16. Gurvich, A. A., and Livanova, T. N., Relationship between mitogenetic radiation and unbalanced molecular organization of cells and the vagus stimulations. Bull. exp. Biol. Med.89 (1980) 179–180.

    Article  CAS  Google Scholar 

  17. Hicks, M., and Gebicki, J. M., Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS Lett.199 (1986) 92–94.

    Article  CAS  Google Scholar 

  18. Ito, H., Takeda, S., Yamaura, H., Matsuzawa, T., Otsu, E., Miyazawa, T., and Kaneda, T., Ultraweak chemiluminescence in brain of spontaneous hypertensive rats, in: Hypertensive Mechanisms, pp. 623–626. Eds W. Rascher, D. Clough and D. Ganten. Schattauer Verlag, Stuttgart 1982.

    Google Scholar 

  19. Jasnoski, M., and Kugler, J., Relaxation, imagery and neuroimmunomodulation, in: Neuroimmuneinteractions, pp. 722–730. Eds B. D. Jankovic, B. M. Markovic and N. A. Spector. Ann. N. Y. Acad. Sci.496 (1987).

  20. Kochel, B., Luminescence of perturbed living organisms: a memory function approach based on linear stochastic models of nonstationary photon emission processes, in: Biological Luminescence, pp. 101–116. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  21. Kochel, B., Perturbed living organisms: a cybernetic approach founded on photon emission stochastic processes. Kybernetes19 (1990) 16–25.

    Article  Google Scholar 

  22. Kochel, B., Grabikowski, E., and Slawinski, J., Analysis of photocounting time series of low-level luminescence from wheat leaves at high temperatures, in: Photon Emission from Biological Systems, pp. 96–109. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  23. Kochel, B., Slawinski, J., and Grabikowski, E., Nonstationary photon emission from wheat leaves under temperature stress. J. Plant Physiol.133 (1988) 592–599.

    Article  Google Scholar 

  24. Lehninger, A. L., Biochemistry. Worth Publishers Inc., New York, N.Y. 1970.

    Google Scholar 

  25. Levine, S. A., and Kidd, P. M., in: Antioxidant Adaptation. Its Role in Free Radical Pathology, Allergy Res. Group, San Leonardo, CA, 1985 (cited after Smith, C. W., and Best, S., Electromagnetic Man, pp. 30–31. J. M. Dent and Sons Ltd, London 1989).

    Google Scholar 

  26. Li, K. H., Bioluminescence and stimulated coherent radiation. Laser Elektro + Optik3 (1981) 32–35.

    Google Scholar 

  27. Li, K. H., Laser-like effects in biomolecules. Phys. Lett.114A (1986) 405–409.

    CAS  Google Scholar 

  28. Li, K. H., and Popp, F. A., Non-exponential decay law of radiation system with coherent rescattering. Phys. Lett.93A (1983) 262–266.

    Google Scholar 

  29. Mann, T., The Biochemistry of Semen and of the Male Reproductive Tract. Methuen and Co., Ltd, London: John Wiley and Sons, Inc., New York 1964.

    Google Scholar 

  30. McCay, P. B., Fong, K., King, M., Lai, E., Weddale, C., Poyer, L., and Hornbrook, K. R., Enzymes-generated free radicals and singlet oxygen as promoters of lipid peroxidation in cell membranes. Lipids1 (1976) 157.

    CAS  Google Scholar 

  31. Murray, R. W., Chemical sources of singlet oxygen, in: Singlet Oxygen, pp. 59–114. Eds H. H. Wasserman and R. W. Murray, Academic Press, New York 1979.

    Google Scholar 

  32. Nicolis, G., and Prigogine, I., Self-Organization in Nonequilibrium Systems. John Wiley, New York 1977.

    Google Scholar 

  33. Perelygin, V. V., and Tarusov, B. N., Flash of very weak radiation on damage to living tissues. Biofizika11 (1966) 539–541.

    CAS  PubMed  Google Scholar 

  34. Popp, F. A., Photon storage in biological systems, in: Electromagnetic Bio-Information, pp. 123–141. Eds F. A. Popp, G. Becker, H. L. Koenig and W. Peschka, Urban and Schwarzenberg, München-Wien-Baltimore 1979.

    Google Scholar 

  35. Popp, F., On the coherence of ultraweak photon emission from living tissues, in: Disequilibrium and Self-Organisation, pp. 207–230. Ed. C. W. Kilmister, D. Reidel Publ. Comp., Dordrecht, Boston, Lancaster, Tokyo 1986.

    Chapter  Google Scholar 

  36. Popp, F. A., Li, K. H., and Nagl, W., A thermodynamic approach to temperature response of biological systems as demonstrated by low level luminescence of cucumber seedlings. Z. Pflanzenphysiol.114 (1984) 1–13.

    Article  Google Scholar 

  37. Popp, F. A., Ruth, B., Bahr, W., Bohm, J., Brass, P., Groelig, G., Rattemeyer, M., Schmidt, H., and Wulle, P., Emission of visible and UV radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.

    Google Scholar 

  38. Quickenden, T. I., Comarmond, M. J., and Tilbury, R. N., Ultraweak bioluminescence spectra of stationary phaseSaccharomyces cerevisiae andSchizosaccharomyces pombe. Photochem. Photobiol.41 (1985) 611–615.

    Article  CAS  PubMed  Google Scholar 

  39. Reiber, H., Low-level luminescence from desintegrated brain cells-subcellular distribution and kinetics of the biophysical radiation, in: Biological Luminescence, pp. 224–233. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  40. Roschger, P., Bjoern, L. O., Devaraj, B., Scott, R. Q., and Inaba, H., Biophoton response of plants due to the environmental stress. Symp. ‘Biophoton 1990’, JRDC, Sendia, Dec. 3–4, 1990, Japan.

  41. Roussel, J. D., Patrick, T. E., Kellgren, H. C., and Breidenstein, C. P., Effect of light, temperature and humidity on physiological response of dairy bulls. J. Dairy Sci.46 (1963) 1125–1131.

    Article  Google Scholar 

  42. Ruth, B., Experimental investigation on ultraweak photon emission, in: Electromagnetic Bio-Information, pp. 107–122. Eds F. A. Popp, G. Becker, H. L. Koenig and W. Peschka. Urban and Schwarzenberg, München 1979.

    Google Scholar 

  43. Salin, M. L., Peroxidases and plant chemiluminescence, in: Biological Luminescence, pp. 237–259. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  44. Salin, M. L., and Bridges, M., Chemiluminescence in wounded root tissue; evidence for peroxidase involvement. Plant Physiol.67 (1981) 43–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scott, R. Q., Usa, M., and Inaba, H., Ultraweak emission imagery of mitosis soybeans. Appl. Phys.B 48 (1989) 183–185.

    Article  Google Scholar 

  46. Scott, R. Q., Roschger, P., Devaraj, B., and Inaba, H., Nuclear membrane phase transition: Observation by intrinsic ultraweak luminescence. Symp. ‘Biophoton 1990’, JRDC, Sendai, Dec. 3–4, 1990, Japan.

  47. Seliger, H. H., Origin of bioluminescence. Photochem. Photobiol.21 (1975) 355–361.

    Article  CAS  PubMed  Google Scholar 

  48. Seliger, H. H., Single photon counting and spectroscopy of low level intensity chemiluminescent reactions, in: Liquid Scintillation Counting, Recent Applications and Development, vol. 2, pp. 281–319. Eds C. T. Peng, D. L. Horrcks and E. L. Alpen. Academic Press, New York 1980.

    Chapter  Google Scholar 

  49. Serkiz, Y. I., Chebotarev, Y. Y., Baraboy, V. A., Orel, V. E., and Chebotarev, G. E., Chemiluminescence of Blood Serum in Experimental and Clinical Oncology. Naukova Dumka, Kiev 1984 (Russian).

    Google Scholar 

  50. Slawinska, D., Chemiluminescence and the formation of singlet oxygen in the oxidation of certain polyphenols and quinones. Photochem. Photobiol.28 (1978) 453–458.

    Article  CAS  Google Scholar 

  51. Slawinska, D., Spectral analysis of ultraweak photon emission from plants, in: Biological Luminescence, pp. 197–212. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek, World Scientific, Singapore 1990.

    Google Scholar 

  52. Slawinska, D., and Polewski, K., Spectral analysis of plant chemiluminescence: participation of polyphenols and aldehydes in light producing reactions, in: Photon Emission from Biological Systems, pp. 226–247. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  53. Slawinska, D., Polewski, K., and Slawinski, J., The stress-induced electromagnetic emission from biosystems: chemiluminescence response of plants to mechanical and chemical damage. Bioelectrochem. Bioenerg.27 (1992) (in press).

  54. Slawinska, D., and Slawinski, J., Chemiluminescent flow method for determination of formaldehyde. Analyt. Chem.47 (1975) 2101–2109.

    Article  CAS  Google Scholar 

  55. Slawinska, D., and Slawinski, J., Chemiluminescence in the peroxidation of adrenalin and noradrenalin, in: Luminescence Assays: Perspectives in Endocrinology and Clinical Chemistry, pp. 221–227. Eds M. Serio and M. Pazzagli. Raven Press, New York 1982.

    Google Scholar 

  56. Slawinska, D., and Slawinski, J., Biophoton emission from cucumber seedlings perturbed by formaldehyde as a possible indicator of the effectiveness of homeopatic drug, in: Bericht an Bonn, pp. 136–173. Ed. F. A. Popp. Verlag Ganzheits Medizin (VGM), Essen 1986.

    Google Scholar 

  57. Slawinski, J., Luminescence researches and its relation to ultraweak cell radiation. Experientia44 (1988) 559–571.

    Article  CAS  PubMed  Google Scholar 

  58. Slawinski, J., Ultraweak luminescence and perturbations of biohomeostasis, in: Biological Luminescence, pp. 49–77. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  59. Slawinski, J., Necrotic photon emission from stress and lethal interactions. Zagad. Biofiz. Wspol.15 (1990) 8–27.

    Google Scholar 

  60. Slawinski, J., Stress-induced biological luminescence. Trends Photochem. Photobiol.2 (1991) 289–308.

    CAS  Google Scholar 

  61. Slawinski, J., Grabikowski, E., and Milczarek, I., A study of seeds vitality by means of quantummeter apparatus for ultraweak luminescence. II. Influence of temperature on biochemiluminescence intensity of germinating seeds. Zeszyty Naukowe Akademii Rolniczej w Szczecinie42 (1974) 307–322.

    Google Scholar 

  62. Slawinski, J., and Kochel, B., Stochastic models of nonstationary photon emission from chemically perturbed living organisms, in: Biological Luminescence, pp. 78–100. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  63. Slawinski, I., Grabikowski, E., and Ciesla, L., Spectral distribution of the ultraweak luminescence from germinating plants. J. Lumin.24/25 (1981) 791–794.

    Article  Google Scholar 

  64. Slawinski, J., and Popp, F. A., Temperature hysteresis of biophoton emission from plants and its thermodynamical analysis. J. Plant Physiol.130 (1987) 111–123.

    Article  Google Scholar 

  65. Smith, C. W., and Best, S., Electromagnetic Man. J. Dent and Sons Ltd, London 1990.

  66. Tarusov, C. W., and Veselovski, W. A., Ultraweak Luminescence from Plants and Its Application. Moscow State Publ. House, Moscow 1978 (Russian).

    Google Scholar 

  67. Tilbury, R. N., Ultraweak luminescence of yeast and bacteria, in: Biological Luminescence, pp. 151–172. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  68. Tryka, S., Ultraweak luminescence from mechanically damaged wheat seeds during imbibition, in: Biological Luminescence, pp. 630–646. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  69. Tryka, S., and Koper, R., Luminescence of cereal grain subjected to the effect of mechanical loads, in: Photon Emission from Biological Systems, pp. 250–255. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and J. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  70. Ursini, F., Barsacchi, R., Pelasi, G., and Benassi, A., Oxidative stress in the heart, studies on low level chemiluminescence. J. Biolumin. Chemilumin.4 (1989) 241–244.

    Article  CAS  PubMed  Google Scholar 

  71. Usa, M., Kobayashi, M., Scott, R. Q., Hiratsuka, R., Maeda, T., and Inaba, H., Ultraweak biophoton emission and bioelectrical activity in plant tissues, in: Biological Luminescence, pp. 117–130. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

  72. Usa, M., Scott, R. Q., Kobayashi, M., Nagoshi, T., Watanabe, H., and Inaba, H., Progress in biophoton research. Photomed. Photobiol.10 (1988) 55–68.

    CAS  Google Scholar 

  73. van Dyke, K., and Castranova, V., Cellular Chemiluminescence, vol. 3. CRC, Boca Raton 1988.

    Google Scholar 

  74. Vladimirov, Yu. A., and Archakov, A. I., Lipid Peroxidation in Biological Membranes. Nauka, Moscow 1975 (Russian).

    Google Scholar 

  75. Watanabe, H., Kobayashi, M., Suzuki, S., Usa, M., and Inaba, H., Aldehyde-enhanced photon emission from crude extracts of soybean seedlings, in: Bioluminescence and Chemiluminescence Current Status, pp. 171–176. Eds P. E. Stanley and L. J. Kricka. J. Wiley and Sons, Chichester 1990.

    Google Scholar 

  76. Williams, M. D., and Chance, B., Spontaneous chemiluminescence of human breath: spectrum, lifetime, temporal distribution and correlation with peroxide. J. biol. Chem.258 (1987) 3628–3632.

    Article  Google Scholar 

  77. Zhuravlev, A. I., Bioluminescence. Trans. Moscow. Soc. Natur.21 (1965) 184–193;58 (1983) 3–258 (Russian).

    Google Scholar 

  78. Zhuravlev, A. I., Spontaneous superlow chemiluminescence and creation of quantum biology, in: Biological Luminescence, pp. 19–49. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slawinski, J., Ezzahir, A., Godlewski, M. et al. Stress-induced photon emission from perturbed organisms. Experientia 48, 1041–1058 (1992). https://doi.org/10.1007/BF01947992

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01947992

Key words

Navigation