Skip to main content
Log in

The effect of stress factors on the spontaneous photon emission from microorganisms

  • Multi-author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The results of recent work on the photon emission from three yeasts and a bacterium is presented. Both visible region and ultraviolet photon emission is observed; however, no luminescence is observed in the absence of oxygen. The visible region emission is attributed to excited carbonyl groups and excited singlet oxygen dimers formed during the decomposition of lipid hydroperoxides. Possible sources of the ultraviolet photon emission are also examined. The use of microorganisms in the study of ultraweak photon emission and its relation to oxidative, temperature and chemical stress is reviewed and the applications and (or) functions of this photon emission are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeles, F. B., Plant chemiluminescence. A. Rev. Pl. Physiol.37 (1986) 49–72.

    Article  CAS  Google Scholar 

  2. Allen, R. C., Chemiluminescence from eukaryotic and prokaryotic cells: reducing potential and oxygen requirements. Photochem. Photobiol.30 (1979) 157–163.

    Article  CAS  PubMed  Google Scholar 

  3. Andersen, B. R., Lint, T. F., and Brendzel, A. M., Chemically shifted singlet oxygen spectrum. Biochim. biophys. Acta542 (1978) 527–536.

    Article  CAS  PubMed  Google Scholar 

  4. Arnold, J. S., Browne, R. J., and Ogryzlo, E. A., The red emission bands of molecular oxygen. Photochem. Photobiol.4 (1965) 963–969.

    Article  CAS  Google Scholar 

  5. Bateman, J. B., Mitogenetic radiation. Biol. Rev.10 (1935) 42–71.

    Article  CAS  Google Scholar 

  6. Borodin, D. N., Energy emanation during cell division processes MM-rays). Plant Physiol.5 (1930) 119–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, C. M., and Johnson, B., Influence of the concentration of glucose and galactose on the physiology ofSaccharomyces cerevisiae in continuous culture. J. gen. Microbiol.64 (1970) 279–287.

    Article  CAS  PubMed  Google Scholar 

  8. Cadenas, E., Biological chemiluminescence. Photochem. Photobiol.40 (1984) 823–830.

    Article  CAS  PubMed  Google Scholar 

  9. Cadenas, E., Arad, I. D., Boveris, A., Fisher, A. B., and Chance, B., Partial spectral analysis of the hydroperoxide-induced chemiluminescence of the perfused lung. FEBS Lett.111 (1980) 413–418.

    Article  CAS  PubMed  Google Scholar 

  10. Cadenas, E., Boveris, A., and Chance, B., Low level chemiluminescence of biological systems, in: Free Radicals in Biology, vol. VI, pp. 211–242. Ed. W. A.Pryor. Academic Press, Orlando 1984.

    Chapter  Google Scholar 

  11. Celan, E., Gradinaru, D., and Celan, B., The evidence of selective radiation emitted by a cell culture which destructively affects some tumoral cell lines, in: Photon Emission from Biological Systems, pp. 219–225. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, New York 1986.

    Google Scholar 

  12. Colli, L., and Facchini, U., Light emission by germinating plants. Nuovo Cimento12 (1954) 150–153.

    Article  Google Scholar 

  13. Colli, L., Facchini, N., Guidotti, G., Dugnani Lonati, R., Orsenigo, M., and Sommariva, O., Further measurements on the bioluminescence of the seedlings. Experientia11 (1955) 479–481.

    Article  Google Scholar 

  14. De Fazi, R., and De Fazi, R., Action of ultraviolet rays on alcoholic fermentation. Annali Chim. appl.4 (1915) 301–329.

    Google Scholar 

  15. De Fazi, R., and De Fazi, R., Action of ultraviolet rays upon alcoholic fermentation of the must of India fig. Annali Chim. appl.8 (1917) 93–101.

    Google Scholar 

  16. De Fazi, R., and De Fazi, R., Action of ultra-violet rays on alcoholic fermentation and on yeast. Atti Congr. naz. Chim. Ind. (1924) 449–450.

  17. Esser, A., and Stauff, J., Lumineszenz von Hefe. Z. Naturf.23 (1968) 1554–1555.

    Article  CAS  Google Scholar 

  18. Ezzahir, A., Godlewski, M., Krol, M., Kwiecinska, T., Raifur, Z., Sitko, D., and Slawinski, J., The influence of environmental factors on the ultraweak luminescence from yeastSaccharomyces cerevisiae. Bioelectrochem. Bioenerg.27 (1992) 57–61.

    Article  CAS  Google Scholar 

  19. Fisher, P. R., Karampetsos, P., Wilczynska, Z., and Rosenberg, L. T., Oxidative metabolism and heat shock enhanced chemiluminescence inDictyostelium discoideum. J. Cell Sci.99 (1991) 741–750.

    Article  CAS  Google Scholar 

  20. Fisher, P. R., and Rosenberg, L. T., Chemiluminescence inDictyostelium discoideum. FEMS Microbiol. Lett.50 (1988) 157–161.

    Article  CAS  Google Scholar 

  21. Gawronski, E., Effeckt mitogenetyczyn drozdzySaccharomyces cerevisiae Hansen rasy piekarnianej AS. Ann. Univ. Mariae Curie-Sklodowska Sect.C 14 (1959) 407–433.

    Google Scholar 

  22. Gisler, G. C., Diaz, J., and Duran, N., Observations on the blood plasma chemiluminescence in normal subjects and cancer patients. Arq. Biol. Technol.26 (1983) 345–352.

    Google Scholar 

  23. Grasso, F., Grillo, C., Musumeci, F., Triglia, A., Rodolico, G., Cammisuli, F., Rinzivillo, C., Fragati, G., Santuccio, A., and Rodolico, M., Photon emission from normal and tumor human tissues. Experientia48 (1992) 10–13.

    Article  CAS  PubMed  Google Scholar 

  24. Grasso, F., Musumeci, F., Triglia, A., Yanbastiev, M., and Borisova, S., Self-irradiation effect on yeast cells. Photochem. Photobiol.54 (1991) 147–149.

    Article  CAS  PubMed  Google Scholar 

  25. Gray, J., and Ouellet, C., Apparent mitogenetic inactivity of active cells. Proc. R. Soc. (London) B.114 (1933) 1–9.

    Google Scholar 

  26. Gurwitsch, A. A., Spektry mitogeneticheskoho izlucheniya myshts kak pokazatel' dinamicheskoi molekulyarnoi organizatsii sarkoplazmy. Bull. exp. Biol. Med. (USSR)62 (1966) 53–56.

    Google Scholar 

  27. Gurwitsch, A. A., Livanova, T. N., and Lazurkina, N. N., Effect of glucose administration and increased vagus nerve tone on changes of mitogenetic radiation and structure-energy states of the liver. Bull. exp. Biol. Med. (USSR)89 (1980) 565–567.

    Google Scholar 

  28. Gurwitsch, A. G., The basic laws of mitogenetic excitation. Arch. Sci. biol. St. Pétersb.31 (1931) 149–159.

    Google Scholar 

  29. Gurwitsch, A. G., and Gurwitsch, L.D., Die Mitogenetische Strahlung. Fischer-Verlag, Jena 1959.

    Google Scholar 

  30. Hollaender, A., and Claus, W. D., Some phases of the mitogenetic ray phenomenon. J. opt. Soc. Am.25 (1935) 270–286.

    Article  CAS  Google Scholar 

  31. Hollaender, A., and Claus, W. D., An experimental study of the problem of mitogenetic radiation. Bull. natl Res. Coun. Washington No.100 (1937).

  32. Hollaender, A., and Schoeffel, E., Mitogenetic rays. Q. Rev. Biol.6 (1931) 215–222.

    Article  Google Scholar 

  33. Hunter, D. J., and Allen, R. C., Oxygen-dependentStreptococcus faecalis chemiluminescence: the importance of metabolism and medium composition, in: Bioluminescence and Chemiluminescence, pp. 531–542. Eds M. A. DeLuca and D. W. McElroy. Academic Press, New York 1981.

    Chapter  Google Scholar 

  34. Inyushin, V. M., and Chekerov, P. R., Biostimulation through Laser Radiation and Bioplasma (English transl.). Danish Society for Psychical Research, Copenhagen 1976.

    Google Scholar 

  35. Ishida, M. R., Ultraweak photon emission from the root tips of higher plant seedlings. I. The quantitative determination and spectroscopic study. A. Rep. Res. Reactor Inst. Kyoto Univ.18 (1985) 51–55.

    Google Scholar 

  36. Johnson, B., and Brown, C. M., A possible relationship between the fatty acid composition of yeasts and the ‘petite’ mutation. Antonie van Leeuwenhoek38 (1972) 137–144.

    Article  CAS  PubMed  Google Scholar 

  37. Khan, A. U., and Kasha, M., Chemiluminescence arising from simultaneous transitions in pairs of singlet oxygen molecules. J. Am. chem. Soc.92 (1970) 3293–3300.

    Article  CAS  Google Scholar 

  38. Kirkin, A. F., Non-chemical remote interactions between cells in culture. Biophysics (USSR)26 (1981) 853–858.

    Google Scholar 

  39. Konev, A. F., Fluorescence and Phosphorescence of Proteins and Nucleic Acids (English transl.). Plenum Press, New York 1967.

    Book  Google Scholar 

  40. Konev, S. V., Lyskova, T. I., and Nisenbaum, G. D., Very weak bioluminescence of cells in the ultraviolet region of the spectrum and its biological role. Biophysics (USSR)11 (1966) 410–413.

    Google Scholar 

  41. Kulin, E. T., Effect of intercellular energy exchange on the metabolism of yeast cultures. Dokl. Akad. Nauk BSSR4 (1960) 78–81.

    CAS  Google Scholar 

  42. Lloyd, D., Boveris, A., Reiter, R., Filipkowski, M., and Chance, B., Chemiluminescence ofAcanthamoeba castellanii. Biochem. J.184 (1979) 149–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lloyd, R. A., Low level chemiluminescence from hydrocarbon autoxidation reactions. II. Thermal decomposition of benzoyl peroxide, cumene hydroperoxide and UV irradiated solvents. Trans. Faraday Soc.61 (1965) 2182–2193.

    Article  CAS  Google Scholar 

  44. Lorenz, E., Search for mitogenetic radiation by means of the photoelectric method. J. gen. Physiol.17 (1934) 843–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ludwig, E., Radiation from yeast. Wschr. Brau.35 (1918) 19–20.

    CAS  Google Scholar 

  46. Mamedov, T. G., Popov, G. A., and Konev, S. V., Ultraweak luminescence of various organisms. Biophysics (USSR)14 (1969) 1102–1107.

    Google Scholar 

  47. Mandelstam, J., McQuillen, K., and Dawes, I., Biochemistry of Bacterial Growth. Blackwell Scientific, Edinburgh 1982.

    Google Scholar 

  48. Moore-Landecker, E., Fundamentals of the Fungi. Prentice Hall, New Jersey 1982.

    Google Scholar 

  49. Popp, F. A., Photon storage in biological systems, in: Electromagnetic Bioinformation, pp. 123–141. Eds F. A. Popp, G. Becker, H. L. Koenig and W. Peschka. Urban and Schwarzenberg, Wien 1979.

    Google Scholar 

  50. Popp, F. A., Biophoton emission. Experientia44 (1988) 543–630.

    Article  Google Scholar 

  51. Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingartner, O., and Wolf, R., Biophoton emission: New evidence for coherence and DNA as source. Cell Biophys.6 (1984) 33–52.

    Article  CAS  PubMed  Google Scholar 

  52. Popp, F. A., Ruth, B., Barr, W., Bohm, J., Grab, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.

    Google Scholar 

  53. Pryor, W. A., Oxy-radicals and related species: their information, lifetimes and reactions. A. Rev. Physiol.48 (1986) 656–667.

    Article  Google Scholar 

  54. Quickenden, T. I., Comarmond, M. J., and Tilbury, R. N., Ultraweak bioluminescence spectra of stationary phaseSaccharomyces cerevisiae andSchizosaccharomyces pombe. Photochem. Photobiol.41 (1985) 611–615.

    Article  CAS  PubMed  Google Scholar 

  55. Quickenden, T. I., Matich, A. J., Pung, S. H., and Tilbury, R. N., An attempt to stimulate cell division inSaccharomyces cerevisiae with weak ultraviolet light. Radiat. Res.117 (1989) 145–157.

    Article  CAS  PubMed  Google Scholar 

  56. Quickenden, T. I., and Que Hee, S. S., Weak luminescence from the yeastSaccharomyces cerevisiae and the existence of mitogenetic radiation. Biochem. biophys. Res. Commun.60 (1974) 764–770.

    Article  CAS  PubMed  Google Scholar 

  57. Quickenden, T. I., and Que Hee, S. S., The spectral distribution of the luminescence emitted during growth of the yeastSaccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochem. Photobiol.23 (1976) 201–204.

    Article  CAS  PubMed  Google Scholar 

  58. Quickenden, T. I., and Que Hee, S. S., On the existence of mitogenetic radiation. Speculations Sci. Technol.4 (1981) 453–464.

    CAS  Google Scholar 

  59. Quickenden, T. I., and Tilbury, R. N., Growth dependent luminescence from cultures of normal and respiratory deficientSaccharomyces cerevisiae. Photochem. Photobiol.37 (1983) 337–344.

    Article  CAS  PubMed  Google Scholar 

  60. Quickenden, T. I., and Tilbury, R. N., An attempt to stimulate mitosis inSaccharomyces cerevisiae with the ultraviolet luminescence from exponential phase cultures of this yeast. Radiat. Res.102 (1985) 254–263.

    Article  CAS  PubMed  Google Scholar 

  61. Quickenden, T. I., and Tilbury, R. N., A critical examination of the bioplasma hypothesis. Physiol. Chem. Phys. med. NMR18 (1986) 89–101.

    CAS  PubMed  Google Scholar 

  62. Quickenden, T. I., and Tilbury, R. N., Luminescence spectra of exponential and stationary phase cultures of respiratory deficientSaccharomyces cerevisiae. J. Photochem. Photobiol., B; Biol.8 (1991) 169–174.

    Article  CAS  Google Scholar 

  63. Rahn, O., Invisible Radiations of Organisms. Borntraeger, Berlin, (1936).

    Google Scholar 

  64. Rattemeyer, M., Popp, F. A., and Nagl, W., Evidence of photon emission from DNA in living systems. Naturwissenschaften68 (1981) 572–573.

    Article  CAS  PubMed  Google Scholar 

  65. Reiter, T., and Gabor, D., Zellteilung und Strahlung. Springer, Berlin 1928.

    Book  Google Scholar 

  66. Richards, O. W., and Taylor, G. W., Mitogenetic rays — A critique of the yeast detector method. Biol. Bull.63 (1932) 113–128.

    Article  Google Scholar 

  67. Roth, J. A., and Kaeberle, M. L., Chemiluminescence byListeria monocytogenes. J. Bact.144 (1980) 752–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Russell, G. A., Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons. Mechanism of the interaction of peroxy radicals. J. Am. chem. Soc.79 (1957) 3871–3877.

    Article  CAS  Google Scholar 

  69. Schauf, B., Repas, L. M., and Kaufmann, R., Localization of ultraweak photon emission in plants. Photochem. Photobiol.55 (1992) 287–291.

    Article  Google Scholar 

  70. Scheminzky, F., Photographic proof of emanations in biochemical processes. Biochem. Z.77 (1916) 14–16.

    CAS  Google Scholar 

  71. Slawinska, D., and Slawinski, J., Biological chemiluminescence. Photochem. Photobiol.37 (1983) 709–715.

    Article  CAS  Google Scholar 

  72. Slawinska, D., and Slawinski, J., Low-level luminescence from biological objects, in: Chemi- and Bioluminescence, pp. 495–531. Ed. J. G. Burr. M. Dekker, New York 1985.

    Google Scholar 

  73. Slawinski, J., Grabikowski, E., and Ciesla, L., Spectral distribution of the ultraweak luminescence from germinating plants. J. Lumines.24/25 (1981) 791–794.

    Article  Google Scholar 

  74. Slawinski, J., Majchrowicz, I., and Grabikowski, E., Ultraweak luminescence from germinating resting spores ofEntomophthora virulenta Hall et Dunn. Acta mycol.17 (1981) 131–139.

    Article  Google Scholar 

  75. Stauff, J., and Reske, G., Chemilumineszenz der Hefe. Naturwissenschaften51 (1964) 39–43.

    Article  CAS  Google Scholar 

  76. Strehler, B. L., and Arnold, W., Light production by green plants. J. gen. Physiol.34 (1951) 809–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tarusov, B. N., Ivanov, I. I., and Petrusevich, Yu. M., Ultraweak Luminescence in Biological Systems. Moscow Univeristy, Moscow 1967.

    Google Scholar 

  78. Tarusov, B. N., and Veselovsky, V. A., Ultraweak Emissions of Plants and Their Applications. Moscow State University, Moscow 1978.

    Google Scholar 

  79. Tilbury, R. N., and Quickenden, T. I., The effect of cosmic-ray shielding on the ultraweak bioluminescence emitted by cultures ofEscherichia coli. Radiat. Res.112 (1987) 398–402.

    Article  CAS  PubMed  Google Scholar 

  80. Tilbury, R. N., and Quickenden, T. I., Spectral and time dependence studies of the ultraweak bioluminescence emitted by the bacteriumEscherichia coli. Photochem. Photobiol.47 (1988) 145–150.

    Article  CAS  Google Scholar 

  81. Tilbury, R. N., and Quickenden, T. I., Luminescence from the yeastCandiada utilis and comparisons across three genera. J. Biolumin. Chemilumin. (1992) in press.

  82. Vasilev, R. F., Chemiluminescence in solutions. I. Methods of identifying the excited states. Opt. Spectrosc.18 (1965) 131–135.

    Google Scholar 

  83. Vladimirov, Yu. A., Ultraweak Luminescence Accompanying Biochemical Reactions (English transl.). NASA, C.F.S.T.I., Springfield, Vermont 1966.

    Google Scholar 

  84. Wang, Y., Zhao, A., Ma, Yu. M., Zhang, Y., Dai, J., and Li, S., Studies on ultraweak luminescence of bacteria. Acta microbiol. sin.30 (1990) 58–62.

    CAS  Google Scholar 

  85. Wolff, L. K., and Ras, G., Über Gurwitschstrahlen bei einfachen chemischen Reaktionen. Biochem. Z.250 (1932) 305–307.

    Google Scholar 

  86. Yanbastiev, M. L., Main and additional problems of biophotonics. J. moles. Struct.115 (1984) 299–302.

    Article  CAS  Google Scholar 

  87. Zhuravlev, A. I., Aleksandr, I., and Trostkinov, V. N., Luminescence in Living Cells. Nauka, Moscow 1968.

    Google Scholar 

  88. Zon, J. R., Physical plasma in biological solids: A possible mechanism for resonant interactions between low intensity microwaves and biological systems. Physiol. Chem. Phys.11 (1979) 501–506.

    CAS  PubMed  Google Scholar 

  89. Zon, J. R., The living cell as a plasma physical system. Physiol. Chem. Phys.12 (1980) 357–364.

    CAS  PubMed  Google Scholar 

  90. Zon, J. R., Physical plasma may exist in biostructures: A reply to the critique by Quickenden and Tilbury. Physiol. Chem. Phys. med. NMR19 (1987) 295–300.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilbury, R.N. The effect of stress factors on the spontaneous photon emission from microorganisms. Experientia 48, 1030–1041 (1992). https://doi.org/10.1007/BF01947991

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01947991

Key words

Navigation