Advertisement

Experientia

, Volume 40, Issue 3, pp 235–243 | Cite as

Slice cultures of cerebellar, hippocampal and hypothalamic tissue

  • B. H. Gähwiler
Full Papers

Summary

Cerebellar, hippocampal and hypothalamic slices prepared from newborn and 7-day-old rats were cultured by means of the roller-tube technique. Identification of cells was made easier by the fact that at least part of the characteristic cytoarchitecture of the tissue was preserved in vitro. Cerebellar Purkinje cells and neurones of the deep cerebellar nuclei were recognized on the basis of their size, their location within the culture and their dendritic arborization. Pyramidal cells of all hippocampal subfields displayed their characteristic basal and apical dendritic trees with numerous spinous processes. Hippocampal granule cells gave rise to a monopolar dendritic arbor; their axons terminated in the dentate hilus and CA3 region. Golgi-like immuniperoxidase staining allowed localization of groups of neurophysin-positive neurones in slices prepared from the anterior hypothalamus. These neurones, bilaterally bordering the third ventricle, usually displayed a simple dendritic arborization and fine beaded axons.—Cultivation of brain slices prepared from young rats offers particular advantages in that the cultured cells are organized in an organotypic monolayer and individual living neurones may be directly visualized.

Keywords

Purkinje Cell Granule Cell Spinous Process Cerebellar Nucleus Dendritic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Adams, J.C., Heavy metal intensification of DAB-based HRP reaction product. J.Histochem. Cytochem.29 (1981) 775.PubMedGoogle Scholar
  2. 3.
    Altman, J. and Anderson, W., Experimental reorganization of the cerebellar cortex. 1. Morphological effects of elimination of all microneurons with prolonged X-irradiation started at birth. J. comp. Neurol.146 (1972) 355–406.CrossRefPubMedGoogle Scholar
  3. 4.
    Altman, J., and Das, G.D., Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. comp. Neurol.124 (1965) 319–336.CrossRefPubMedGoogle Scholar
  4. 5.
    Angevine, J.B. Jr, Time of neuron origins in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol., suppl.2 (1965) 1–70.Google Scholar
  5. 6.
    Armstrong, W.E., Schöler, J., and McNeill, T.H., Immunocytochemical, Golgi and electron microscopic characterization of dendrites in the ventral glial lamina of the rat supraoptic nucleus. Neuroscience7 (1982) 679–694.CrossRefPubMedGoogle Scholar
  6. 7.
    Armstrong, W.E., Warach, S., Hatton, G.I., and McNeill, T.H., Subnuclei in the rat hypothalamic paraventricular nucleus. A cytoarchitectural, horseradish peroxidase and immunocytochemical analysis. Neuroscience5 (1980) 1931–1958.CrossRefPubMedGoogle Scholar
  7. 8.
    Baertschi, A.J., Bény, J.L., and Gähwiler, B., Hypothalamic paraventricular nucleus is a priviledged site for brain-pituitary interaction in long-term tissue culture. Nature295 (1982) 145–147.CrossRefPubMedGoogle Scholar
  8. 9.
    Baertschi, A.J., Bény, J.L., and Gähwiler, B., The hypothalamo-hypophysial system in long-term tissue culture. in: Vasopressin, Corticoliberin and Opiomelancortins, pp. 259–271. Eds. A.J. Baertschi and J.J. Dreifuss. Plenum Press, London 1982.Google Scholar
  9. 10.
    Blank, N.K., and Seil, F.J., Mature Purkinje cells in cerebellar tissue cultures. An ultra-structural study. J. comp. Neurol.,208 (1982) 169–176.CrossRefPubMedGoogle Scholar
  10. 11.
    Bornstein, M.B., Reconstituted rat-tail collagen used as substrate for tissue culture on coverslips in Maximov slide and rollertubes. Lab. Invest.7 (1958) 134–140.PubMedGoogle Scholar
  11. 12.
    Calvet, M.C., and Calvet, J., Horseradish peroxidase iontophoretic intracellular labelling of cultured Purkinje cells. Brain Res.173 (1979) 527–531.CrossRefPubMedGoogle Scholar
  12. 13.
    Chan-Palay, V., Cerebellar Dentate Nucleus. Organization, Cytology and Transmitters, Springer-Verlag, Berlin 1977.Google Scholar
  13. 14.
    Crepel, F., Delhaye-Bouchaud, N., Dupont, J.L., and Sotelo, C., Dendritic and axonic fields of Purkinje cells in developing and X-irradiated cerebellum. A comparative study using intracellular staining with horseradish peroxidase. Neuroscience5 (1980) 333–347.CrossRefPubMedGoogle Scholar
  14. 15.
    Dyball, R.E.J., and Kemplay, S.K., Dendritic trees of neurones in the rat supraoptic nucleus. Neuroscience7 (1982) 223–230.CrossRefPubMedGoogle Scholar
  15. 16.
    Gähwiler, B.H., Labelling of neurons within CNS explants by intracellular injection of Lucifer yellow. J. Neurobiol.12 (1981) 187–193.CrossRefPubMedGoogle Scholar
  16. 17.
    Gähwiler, B.H., Organotypic monolayer cultures of nervous tissue. J. neurosci. Meth.4 (1981) 329–342.CrossRefGoogle Scholar
  17. 18.
    Gähwiler, B.H., Hypothalamic magnocellular neurones in culture, in: Vasopressin, Corticoliberin and Opiomelanocortins, pp. 129–135. Eds. A.J. Baertschi and J.J. Dreifuss. Academic Press, London 1982.Google Scholar
  18. 19.
    Gähwiler, B.H., and Dreifuss, J.J., Multiple actions of acetylcholine on hippocampal pyramidal cells in organotypic explant cultures. Neuroscience7 (1982) 1243–1256.CrossRefPubMedGoogle Scholar
  19. 20.
    Geneser-Jensen, F.A., and Blackstad, T.W., Distribution of acetylcholinesterase in the hippocampal region of the guineapig. I. Entorhinal area, parasubiculum and presubiculum. Z. Zellforsch.114 (1971) 460–481.PubMedGoogle Scholar
  20. 21.
    Hamill, O.P., Marty, A., Neher, E., Salzman, B., and Sigworth, F.J., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch.391 (1981) 85–100.CrossRefGoogle Scholar
  21. 22.
    Haug, F.-M.S., Heavy metals in the brain. A light microscope study of the rat with Timm's sulphide silver method. Methodological considerations and regional staining patterns. Adv. Anat. Embryol. Cell Biol.47 (1973) 1–71.PubMedGoogle Scholar
  22. 23.
    Hendelman, W.J., Marshall, K.C., Aggerwal, A.S., and Wojtovicz, J.M., Organization of pathways in cultures of mouse cerebellum, in: Cell, Tissue and Organ Cultures, pp. 539–555. Eds S. Fedoroff and L. Hertz. Academic Press, New York 1977.Google Scholar
  23. 24.
    Herndorn, R.M., Margolis, G., and Kilham, L., The synaptic organization of the malformed cerebellum induced by perinatal infection with the feline panleucopenia virus (PLV). J. Neuropath. exp. Neurol.30 (1971) 557–570.PubMedGoogle Scholar
  24. 25.
    Hine, R.J., and Das, G.D., Neuroembryogenesis in the hippocampal formation of the rat. Z. Anat. Entwickl.-Gesch.144 (1974) 173–186.CrossRefGoogle Scholar
  25. 26.
    Hirano, A., and Dembitzer, H.M., Cerebellar alterations in the weaver mouse. J. cell. Biol.56 (1973) 478–486.CrossRefPubMedGoogle Scholar
  26. 27.
    Hirano, A., Dembitzer, H.M., and Jones, M., An electronmicroscopic study of cycasin-induced cerebellar alterations. J. Neuropath. exp. Neurol.31 (1972) 113–125.PubMedGoogle Scholar
  27. 28.
    Ifft, J.D., and McCarthy, L., Somatic spines in the supraoptic nucleus of the rat hypothalamus. Cell Tissue Res.148 (1974) 203–211.CrossRefPubMedGoogle Scholar
  28. 29.
    La Vail, J.H., and Wolf, M.K., Postnatal development of the mouse dentate gyrus in organotypic cultures of the hippocampal formation. J. Anat.137 (1973) 47–66.CrossRefGoogle Scholar
  29. 30.
    Leontovich, T.A., The neurons of the magnocellular neurosecretory nuclei fo the dog's hypothalamus. J. Hirnforsch.11 (1969/70) 499–517.Google Scholar
  30. 31.
    Luqui, I.J., and Fox, C.A., The supraoptic nucleus and the supraopticohypophysial tract in the monkey (Macaca mulatta). J. comp. Neurol.168 (1976) 7–40.CrossRefPubMedGoogle Scholar
  31. 32.
    Minkwitz, H.G., Zur Entwicklung der Neuronenstruktur des Hippocampus währen der prä-und postnatalen Ontogenese der Albinoratte. J. Hirnforsch.17 (1976) 213–231.PubMedGoogle Scholar
  32. 33.
    Minkwitz, H.G., and Holz, L., Die ontologische Entwicklung von Pyramidenneuronen aus dem Hippocampus (CAI) der Ratte. J. Hirnforsch.16 (1975) 37–54.PubMedGoogle Scholar
  33. 34.
    Murray, M.R., and Stout, A.P., Adult human sympathetic ganglion cells cultivated in vitro. Am. J. Anat.80 (1947) 225–273.CrossRefGoogle Scholar
  34. 35.
    Neale, E.A., Moonen, G., Mac Donald, R.L., and Nelson, P.G., Cerebellar macroneurons in microexplant cell culture: ultrastructural morphology. Neuroscience7 (1982) 1879–1890.CrossRefPubMedGoogle Scholar
  35. 36.
    Privat, A., Dendritic growth in vitro, in: Physiology and Pathology of Dendrites. Advances in Neurology, vol. 4, pp. 201–216. Ed. G.W. Kreutzberg. Raven Press, New York, 1975.Google Scholar
  36. 37.
    Schlesinger, A.R., Cowan, W.M., and Gottlieb, D.I., An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J. comp. Neurol.159 (1975) 149–176.CrossRefPubMedGoogle Scholar
  37. 38.
    Sofroniew, M.V., Gähwiler, B.H., and Dreifuss, J.J., Cultured hypothalamic vasopressin (AVP), oxytocin (OT) and neurophysin (NPH) neurons examined by Golgi-like immunoperoxidase staining. Neuroscience7 (1982) S198-S199.Google Scholar
  38. 39.
    Sofroniew, M.V., and Glasmann, W., Golgi=like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat. Neuroscience6 (1981) 619–643.CrossRefPubMedGoogle Scholar
  39. 40.
    Sotelo, C., Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res.94 (1975) 19–44.CrossRefPubMedGoogle Scholar
  40. 41.
    Timms, F., Zur Histochemie des Ammonshorngebietes. Z. Zellforsch.48 (1958) 548–555.CrossRefPubMedGoogle Scholar
  41. 42.
    Zimmer, J., Development of the hippocampus and fascia dentata: morphological and histochemical aspects, in: Maturation of the Nervous System, pp. 171–189. Ed. M.A. Corner, Elsevier/North Holland Press, Amsterdam 1978.Google Scholar

Copyright information

© Birkhäuser Verlag 1984

Authors and Affiliations

  • B. H. Gähwiler
    • 1
  1. 1.Preclinical ResearchSandoz LtdBasel(Switzerland)

Personalised recommendations