Planta

, Volume 49, Issue 4, pp 389–405 | Cite as

Der Einfluss monochromatischer Strahlung auf das Längenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. (=Brassica alba Boiss.)

  • Hans Mohr
Article

Summary

  1. a)

    Some photoreactions influencing the early stages of the development of mustard seedlings (Brassica alba Boiss.=Sinapis alba L.) were studied, using monochromatic radiation (400–800 mμ) from a spectrograph.

     
  2. b)

    Anthocyanin formation is light-dependent in these seedlings and is controlled by two photoreactions. One of these photoreactions is governed by the well-known red-far-red-pigment system and is practically saturated after a very shor time of irradiation (low-energy reaction). The other photoreaction for anthocyanin formation is a high-energy reaction. Its action spectrum was determined. There was an action throughout the visible spectrum with peaks in the far-red region (about 710 mμ) and in the blue region.

     
  3. c)

    The action spectrum for the influence of radiation between 400 and 800 mμ was also determined for the lengthening of the hypocotyl. It is practically identical with the action spectrum for the high-energy reaction of anthocyanin formation. This photoreaction which essentially controls the lengthening, is also a high-energy reaction. These facts and results of additional experiments with colored fluorescent tubes indicate that the same pigment system absorbs the energy which controls formation of anthocyanin and lengthening of the hypocotyl. A significant effect of the reversible red-far-red-pigment system on the lengthening of the hypocotyl could not be obtained.

     
  4. d)

    The region of action indicates that the pigment that is involved in the high-energy reactions might be a copper-flavoprotein.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Åberg, B.: Physiologische und ökologische Studien über die pflanzliche Photomorphose. Symbolae bot. Upsaliensis8, 5–189 (1943).Google Scholar
  2. Arthur, J. M.: Red pigment production in apples by means of artificial light sources. Contrib. Boyce Thompson Inst.4, 1–18 (1932).Google Scholar
  3. : Radiation and anthocyanin pigments. In: Biological effects of radiation, B. M. Duggar, ed., Vol. II, p. 1109–1118. New York: McGraw-Hill 1936.Google Scholar
  4. Borthwick, H. A., S. B. Hendricks andM. W. Parker: Action spectrum for inhibition of stem growth in dark-grown seedlings of albino and nonalbino barley (Hordeum vulgare). Bot. Gaz.113, 95–105 (1951).CrossRefGoogle Scholar
  5. : The reaction controlling floral initiation. Proc. Nat. Acad. Sci. U.S.A.38, 929–934 (1952).Google Scholar
  6. Borthwick, H. A., S. B. Hendricks, E. H. Toole andV. K. Toole: Action of light on lettuce-seed germination. Bot. Gaz.115, 205–225 (1954).CrossRefGoogle Scholar
  7. Bünning, E.: Phototropismus und Karotinoide. III. Weitere Untersuchungen an Pilzen und höheren Pflanzen. Planta (Berl.)27, 583–610 (1937).Google Scholar
  8. : Über die Verhinderung des Etiolement. Ber. dtsch. bot. Ges.59, 2–9 (1941).Google Scholar
  9. Burkholder, P. R.: The role of light in the life of plants. II. The influence of light upon growth and differentiation. Bot. Rev.2, 97–172 (1936).Google Scholar
  10. Crocker, W.: Growth of plants. New York: Reinhold Publishing Co. 1948.Google Scholar
  11. Downs, R. J.: Photoreversibility of leaf and hypocotyl elongation of dark grown Red Kidney bean seedlings. Plant Physiol.30, 468–473 (1955).Google Scholar
  12. : Photoreversibility of flower initiation. Plant Physiol.31, 279–284 (1956).Google Scholar
  13. Edmondsen, Y. H., andK. V. Thimann: The biogenesis of the anthocyanins. II. Evidence for the mediation of copper in anthocyanin synthesis. Arch. of Biochem.25, 79–90 (1950).Google Scholar
  14. Fortanier, E. J.: Some observations on the influence of spectral regions of light on stem elongation, flower bud opening and leaf movement in Arachis hypogea L. Meded. Landbouwhogeschool Wageningen54, 103–115 (1954).Google Scholar
  15. Galston, A. W., andR. S. Baker: Studies on the physiology of light action. II. The photodynamic action of riboflavin. Amer. J. Bot.36, 773–780 (1949).Google Scholar
  16. Goodwin, R. H.: On the inhibition of the first internode of Avena by light. Amer. J. Bot.28, 325–332 (1941).Google Scholar
  17. Goodwin, R. H., andO. v. H. Owens: The effectiveness of the spectrum in Avena internode inhibition. Bull. Torrey Bot. Club78, 11–21 (1951).Google Scholar
  18. Hendricks, S. B., andH. A. Borthwick: Time dependencies in photoperiodism. 8. Congr. internat. de Bot., Sect.11, S. 323–324. Paris 1954.Google Scholar
  19. Koski, V. M., C. S. French, andJ. H. C. Smith: The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and albino corn seedlings. Arch. of Biochem. a. Biophysics31, 1–17 (1951).CrossRefGoogle Scholar
  20. Lange, S.: Über den Einfluß weißen und roten Lichtes auf die Entwicklung des Mesokotyls bei Haferkeimlingen. Jb. Bot.71, 1–25 (1929).Google Scholar
  21. Mahler, H. R.: Studies on the fatty acid oxidizing system of animal tissues. IV. The prosthetic group of butyryl Coenzyme A dehydrogenase. J. of Biol. Chem.206, 13–26 (1954).Google Scholar
  22. : Nature and function of metallo-flavoproteins. Adv. Enzymol.17, 233–291 (1956).Google Scholar
  23. Mohr, H.: Die Beeinflussung der Keimung von Farnsporen durch Licht und andere Faktoren. Planta (Berl.)46, 534–551 (1956).Google Scholar
  24. Parker, M. W., S. B. Hendricks, H. A. Borthwick andN. J. Scully: Action spectrum for the photoperiodic control of floral initiation of short-day plants. Bot. Gaz.108, 1–26 (1946).CrossRefGoogle Scholar
  25. Parker, M. W., S. B. Hendricks, H. A. Borthwick andF. W. Went: Spectral sensitivities for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Amer. J. Bot.36, 194–204 (1949).Google Scholar
  26. Siegelmann, H. W., andS. B. Hendricks: Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol.1957a (in press).Google Scholar
  27. Siegelmann, H. W., andS. B. Hendricks: Photocontrol of anthocyanin synthesis in apple subepidermal tissue. Plant Physiol.1957b (in preparation).Google Scholar
  28. Stolwijk, J. A. J.: Photoperiodic and formative effects of various wavelength regions in Cosmos bipinnatus, Spinacia oleracea, Sinapis alba and Pisum sativum. Proc. Kon. Ned. Akad. v. Wetensch. C55, 489–502 (1952).Google Scholar
  29. : Wave length dependence of photomorphogenesis in plants. Meded. Landbouwhogeschool Wageningen54, 181–244 (1954).Google Scholar
  30. Wagenknecht, A. C., andR. H. Burris: Indoleacetic acid inactivating enzymes from bean roots and pea seedlings. Arch. of Biochem.25, 30–53 (1950).Google Scholar
  31. Wassisk, A. C., andJ. A. J. Stolwijk: Effects of light quality on plant growth. Annual Rev. Plant Physiol.7, 373–400 (1956).CrossRefGoogle Scholar
  32. Weintraub, R. L., andE. D. McAlister: Developmental physiology of the grass seedling. I. Inhibition of the mesocotyl of Avena sativa by continuous exposure to light of low intensities. Smith. Misc. Coll.101, No 17, 1–10 (1942).Google Scholar
  33. Weintraub, R. L., andL. Price: Developmental physiology of the grass seedling. II. Inhibition of mesocotyl elongation in various grasses by red and by violet light. Smith. Misc. Coll.106, No 21, 1–15 (1947).Google Scholar
  34. Went, F. W.: Effects of light on stem and leaf growth. Amer. J. Bot.28, 83–95 (1941).Google Scholar
  35. Withrow, R. B.: Response of seedlings to various wavebands of low intensity irradiation. Plant Physiol.16, 241–256 (1941).Google Scholar
  36. Withrow, R. B., W. H. Klein, L. Price andV. Elstad: Influence of visible and near infrared radiant energy on organ development and pigment synthesis in bean and corn. Plant Physiol.28, 1–14 (1953).Google Scholar

Copyright information

© Springer-Verlag 1957

Authors and Affiliations

  • Hans Mohr
    • 1
    • 2
  1. 1.Agricultural Research Service, Plant Industry StationU.S. Department of AgricultureBeltsvilleU.S.A.
  2. 2.Botanisches Institut der UniversitätTübingen

Personalised recommendations