Skip to main content
Log in

Kowalewski's asymptotic method, Kac-Moody lie algebras and regularization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use an effective criterion based on the asymptotic analysis of a class of Hamiltonian equations to determine whether they are linearizable on an abelian variety, i.e., solvable by quadrature. The criterion is applied to a system with Hamiltonian

$$H = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\sum\limits_{i = 1}^l {p_i^2 } + \sum\limits_{i = 1}^{l + 1} {\exp \left( {\sum\limits_{j = 1}^l {N_{ij} x_j } } \right)} ,$$

parametrized by a real matrixN=(N ij ) of full rank. It will be solvable by quadrature if and only if for allij, 2(N NT) ij (N N T) −1 jj is a nonpositive integer, i.e., the interactions correspond to the Toda systems for the Kac-Moody Lie algebras. The criterion is also applied to a system of Gross-Neveu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980)

    Google Scholar 

  2. Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math.38, 318–379 (1980)

    Google Scholar 

  3. Carter, R.W.: Simple groups of Lie type. London, New York: Wiley 1972

    Google Scholar 

  4. Helgason, S.: Differential geometry, Lie groups and symmetric spaces. New York: Academic Press 1978

    Google Scholar 

  5. Hille, E.: Ordinary differential equations in the complex domain. New York: Wiley-Interscience 1976

    Google Scholar 

  6. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  7. Kowalewski, S.: Sur le probleme de la rotation d'un corps solide autour d'un point fixe. Acta Math.12, 177–232 (1889)

    Google Scholar 

  8. Kowalewski, S.: Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe. Acta Math.14, 81–93 (1891)

    Google Scholar 

  9. McKean, H.P.: Theta functions, solitons and singular curves, partial differential equations and geometry, pp. 237–254. New York: M. Dekker, Inc. 1979

    Google Scholar 

  10. Bogoyavlensky, O.I.: On perturbations of the periodic Toda lattices. Commun. Math. Phys.51, 201–209 (1976)

    Google Scholar 

  11. Shankar, R.: A model that acquires integrability andO(2N) invariance at a critical coupling. Preprint Yale University YTP 81-06

  12. Adler, M., van Moerbeke, P.: The algebraic integrability of geodesic flow on SO(4). Invent. Math. (to appear) (1982)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Moser

Supported in part by NSF contract MCS 79-17385

Supported in part by NSF contract MCS 79-05576

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, M., van Moerbeke, P. Kowalewski's asymptotic method, Kac-Moody lie algebras and regularization. Commun.Math. Phys. 83, 83–106 (1982). https://doi.org/10.1007/BF01947073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01947073

Keywords

Navigation