Experientia

, Volume 51, Issue 11, pp 1081–1084 | Cite as

Identification of a major cytokinin in coconut milk

  • H. Kobayashi
  • N. Morisaki
  • Y. Tago
  • Y. Hashimoto
  • S. Iwasaki
  • E. Kawachi
  • R. Nagata
  • K. Shudo
Research Articles

Abstract

A major cytokinin found in coconut milk was isolted by using the tobacco callus growth-promoting assay as a guide during purification. The structure of the factor was determined to be 14-O-{3-O-[β-d-galactopyranosyl-(1→2)-α-d--galactopyranosyl-(1→3)-α-L-arabinofuranosyl]-4-O-(α-L-arabinofuranosyl)-β-d-galactopyranosyl}-trans-zeatin riboside [G3A2-ZR] by various NMR techniques, including heteronuclear multiple bond connectivity by 2D multiple quantum NMR (HMBC), as well as mass spectroscopy and sugar analysis. The optimum concentration of G3A2-ZR for cytokinin activity in the tobacco callus assay was estimated to be 5×10−6 M, so that G3A2-ZR is one order of magnitude more potent than 1,3-diphenylurea and one order less potent than zeatin riboside. At least 20% of the cytokinin activity of coconut milk could be attributed to G3A2-ZR.

Key words

Coconut milk cytokinin zeatin glycoside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mok, D. W. S., and Mok, M. C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton (1994).Google Scholar
  2. 2.
    van Overbeek, J., Conklin, M. E., and Blakeslee, F. Am. J. Bot.29 (1942) 472.Google Scholar
  3. 3.
    Shantz, E. M. and Steward, E. C., J. Am. chem. Soc.74 (1952) 6133.CrossRefGoogle Scholar
  4. 4.
    Shantz, E. M., and Steward, E. C., J. Am. chem. Soc.77 (1955) 6351.CrossRefGoogle Scholar
  5. 5.
    On one occasion we found a small amount of 1,3-diphenylurea, but this result was not reproducible (K. Shudo, unpubl. result).Google Scholar
  6. 6.
    Letham, D. S., Physiol. Plant.32 (1974) 66.Google Scholar
  7. 7.
    van Staden, J., and Drewes, S. E., Physiol. Plant.34 (1975) 106.Google Scholar
  8. 8.
    van Staden, J., and Drewes, S. E., Plant Sci.4 (1975) 391.CrossRefGoogle Scholar
  9. 9.
    van Staden, J., Physiol. Plant.36 (1976) 123.Google Scholar
  10. 10.
    Takahashi, S., Shudo, K., Okamoto, T., Yamada, K., and Isogai, Y., Phytochemistry17 (1978) 1201.CrossRefGoogle Scholar
  11. 11.
    Waeghe, T. J., Darvill, A. D., McNell, M., and Albersheim, P., Carbohydrate Res.123 (1983) 281.CrossRefGoogle Scholar
  12. 12.
    Sawardeker, J. S., Sloneker, J. H., and Jeanes, A., Analyt. Chem.37 (1965) 1602.CrossRefGoogle Scholar
  13. 13.
    Perlin, A. S., Casu, B., and Koch, H. J., Can. J. Chem.48 (1970) 2596.Google Scholar
  14. 14.
    Wohl, A., Berichte26 (1893) 730.Google Scholar
  15. 15.
    Nagata, R., Kawachi, E., Hashimoto, Y., and Shudo, K., Biochem. biophys. Res. Commun.191 (1993) 543.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • H. Kobayashi
    • 1
  • N. Morisaki
    • 1
  • Y. Tago
    • 1
  • Y. Hashimoto
    • 1
  • S. Iwasaki
    • 1
  • E. Kawachi
    • 2
  • R. Nagata
    • 2
  • K. Shudo
    • 2
  1. 1.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyo(Japan)
  2. 2.Faculty of Pharmaceutical SciencesThe University of TokyoTokyo(Japan)

Personalised recommendations