Advertisement

Experientia

, Volume 51, Issue 11, pp 1028–1039 | Cite as

Genetic knockouts in mice: An update

  • B. S. Shastry
Reviews

Abstract

Gene disruption technology in mammals, by homologous recombination in embryonic stem cells, is a powerful method to manipulate the mouse germ line. In the past decade it has produced a wealth of knowledge concerning neuronal development, neurodegenerative disorders and the roles of oncogenes, Hox genes and growth factors during development. A surprising variety of genes, however, have given unexpected and disappointing results. A gene/function redundancy theory proposed by many investigators to explain the unexpected results has been supported in certain cases by the generation of double knockout mice. Modification of the basic technology now allows the investigators to carry out a variety of manipulations including conditional or tissue-specific knockout. This may provide a better opportunity in the future for the gene therapy approach to correct the genetic disorder.

Key words

Gene disruption gene targeting homologous recombination phenotype redundancy stem cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Note added in proof

  1. (1).
    Bi, L., Lawler, A. M., Antonarakis, S. E., High, K. A., Gearhart, J. D., and Kazazian, H. H. Jr, Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nature Genet.10 (1995) 119–121.CrossRefPubMedGoogle Scholar
  2. (2).
    Witke, W., Sharpe, A. H., Hartwig, J. H., Azuma, T., Stossel, T. P., and Kwiatkowski, D. J., Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell81 (1995) 41–51.CrossRefPubMedGoogle Scholar
  3. (3).
    Zhou, Q. Y., Quaife, C. J., and Palmiter, R. D., Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature374 (1995) 640–643.CrossRefPubMedGoogle Scholar
  4. (4).
    Thomas, S. A., Matsumoto, A. M., and Palmiter, R. D., Noradrenaline is essential for mouse fetal development. Nature374 (1995) 643–646.CrossRefPubMedGoogle Scholar
  5. (5).
    Tecott, L. H., Sun, L. M., Akana, S. F., Strack, A. M., Lowenstein, D. H., Dallman, M. F., and Julius, D., Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature374 (1995) 542–546.CrossRefPubMedGoogle Scholar
  6. (6).
    Wang, Z. Q., Auer, B., Stingl, L., Berghammer, H., Haidacher, D., Schweiger, M., and Wagner, E. F., Mice lacking ADPRT and poly (ADP-ribosyl) ation develop normally but are susceptible to skin disease. Genes Dev.9 (1995) 509–520.PubMedGoogle Scholar
  7. (7).
    Shawlot, H., and Behringer, R. R., Requirement for Lim 1 in head-organizer function. Nature374 (1995) 425–430.CrossRefPubMedGoogle Scholar
  8. (8).
    Satokata, I., Benson, G., and Maas, R., Sexually dimorphic sterility phenotypes in Hoxa 10-deficient mice. Nature374 (1995) 460–463.CrossRefPubMedGoogle Scholar
  9. (9).
    Tarakhovsky, A., Turner, M., Schaal, S., Mee, P. J., Duddy, L. P., Rajewsky, K., and Tybulewicz, V. L. J., Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature374 (1995) 467–470.CrossRefPubMedGoogle Scholar
  10. (10).
    Bullard, D. C., Qin, L., Lorenzo, I., Quinlin, W. M., Doyle, N. A., Bosse, R., Vestweber, D., Doerschuk, C. M., and Beaudet, A. L., P-selectin/ICAM-1 double mutant mice: Acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J. clin. Invest.95 (1995) 1782–1788.PubMedGoogle Scholar
  11. (11).
    Kuida, K., Kippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S.-S., and Flavell, R. A., Altered cytokine export and apoptosis in mice deficient in interleukin-1 β converting enzyme. Science267 (1995) 2000–2003.PubMedGoogle Scholar
  12. (12).
    Reaume, A. G., deSousa, P. A., Kulkarni, S., Langille, B. L., Zhu, D., Davies, T. C., Juneja, S. C., Kidder, G. M., and Rossant, J., Cardiac malformation in neonatal mice lacking connexin 43. Science267 (1995) 1831–1834.PubMedGoogle Scholar
  13. (13).
    Parr, B. A., and McMahon, A. P., Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature374 (1995) 350–353.CrossRefPubMedGoogle Scholar
  14. 1.
    Aiba, A., Chen, C., Herrup, K., Rosenmund, C., Stevens, C. F., and Tonegawa, S., Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell79 (1994) 365–375.CrossRefPubMedGoogle Scholar
  15. 2.
    Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., and Tonegawa, S., Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell.79 (1994) 377–388.CrossRefPubMedGoogle Scholar
  16. 3.
    Andrikopoulos, K., Liu, X., Keene, D. R., Jaenisch, R., and Ramirez, F., Targeted mutation in the Col 5a2 gene reveals a regulatory role for the type V collagen during matrix assembly. Nature Genet.9 (1995) 561–574.CrossRefGoogle Scholar
  17. 4.
    Ang, S.-L., and Rossant, J., HNF-3 β is essential for node and notochord formation in mouse development. Cell78 (1994) 561–574.CrossRefPubMedGoogle Scholar
  18. 5.
    Appleby, M. W., Gross, J. A., Cooke, M. P., Levin, S. D., Qian, X., and Perlmutter R. M., Defective T cell receptor signalling in mice lacking the thymus isoform of p59fyn. Cell70 (1992) 751–763.CrossRefPubMedGoogle Scholar
  19. 6.
    Araki, E., Lipes, M. A., Patti, M.-E., Bruning, J. C., Haag III, B., Johnson, R. S., and Kahn, C. R., Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature372 (1994) 186–190.CrossRefPubMedGoogle Scholar
  20. 7.
    Askew, R. G., Doetschman, T., and Lingrel, J. B., Sitedirected point mutations in embryonic stem cells: a genetargeting tag-and-exchange strategy. Molec. cell. Biol.13 (1993) 4115–4124.PubMedGoogle Scholar
  21. 8.
    Baba, T., Azuma, S., Kashiwabara, S., and Toyoda, Y., Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J. biol. Chem.269 (1994) 31845–31849.PubMedGoogle Scholar
  22. 9.
    Bain, G., Maandag, E. C. R., Izon, D. J., Amsen, D., Kruisbeek, A. M., Weinbraub, B. C., Krop, I., Schlissel, M. S., Feeney, A. J., Van Roon, M., Van der Valk, M., te Riele, H. P. J., Berns, A., and Murre, C., E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell79 (1994) 885–892.CrossRefPubMedGoogle Scholar
  23. 10.
    Bakker, C. E., The Dutch-Belgian fragile X consortium. Fmrl knockout mice: A model to study fragile X-mental retardation. Cell78 (1994) 23–33.PubMedGoogle Scholar
  24. 11.
    Boison, D., and Stoffel, W., Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc. natl Acad. Sci. USA91 (1994) 11709–11713.PubMedGoogle Scholar
  25. 12.
    Bronson, S. K., and Smithies, O. Altering mice by homologous recombination using embryonic stem cells. J. biol. Chem.264 (1994) 27155–27158.Google Scholar
  26. 13.
    Capecchi, M. R., Altering the genome by homologous recombination. Science244 (1989) 1288–1292.PubMedGoogle Scholar
  27. 14.
    Capecchi, M. R., Targeted gene replacement. Sci. Am.270 (1994) 52–59.PubMedGoogle Scholar
  28. 15.
    Carmelist, P., Schoonjans, L., Kieckens, L., Ream, B., Degen, J., Bronson, R., DeVos, R., van den Oord, J. J., Collen, D., and Mulligan, R. C., Physiological consequences of loss of plasminogen activator gene function in mice. Nature368 (1994) 419–424.CrossRefPubMedGoogle Scholar
  29. 16.
    Castigli, E., Alt, F. W., Davidson, L., Bottaro, A., Mizoguchi, E., Bhan, A. K., and Geha, R. F., CD40 deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc. natl Acad. Sci. USA91 (1994) 12135–12139.PubMedGoogle Scholar
  30. 17.
    Chen, W. S., Manova, K., Weinstein, D. C., Duncan, S. A., Plump, A. S., Prezioso, V. R., Bachvarova, R. F., and Darnell, J. E., Jr., Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev.8 (1994) 2466–2477.PubMedGoogle Scholar
  31. 18.
    Cheng, X.-S., Sheller, J. R., Johnson, E. N., and Funk, C. D., Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature372 (1994) 179–182.CrossRefPubMedGoogle Scholar
  32. 19.
    Colledge, W. H., Carlton, M. B. L., Udy, G. B., and Evans, M. J., Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature370 (1994) 65–68.CrossRefPubMedGoogle Scholar
  33. 20.
    Colucci-Guyon, E., Portier, M.-M., Dunia, I., Paulin, D., Pournin, S., and Babinet, C., Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell79 (1994) 679–694.CrossRefPubMedGoogle Scholar
  34. 21.
    Condie, B. G., and Capecchi, M. R., Mice with targeted disruption in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature370 (1994) 304–307.CrossRefPubMedGoogle Scholar
  35. 22.
    Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti F., Bordi, F., Franz-Bacon, K., Reggiani, A., Matarese, V., Conde, F., Collingridge, G. L., and Crepel, F., Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature372 (1994) 237–243.CrossRefPubMedGoogle Scholar
  36. 23.
    Crowley, C., Spencer, S. D., Nishimura, M. C., Chen, K. S., Pitts-Meek, S., Armanini, M. P., Ling, L. H., McMahon, S. B., Shelton, D. L., Levinson, A. D., and Phillips, H. S., Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell76 (1994) 1001–1011.CrossRefPubMedGoogle Scholar
  37. 24.
    Cruz, A., Coburn, C. M., and Beverley, S. M., Double targeted gene replacement for creating null mutants. Proc natl Acad. Sci. USA88 (1991) 7170–7174.PubMedGoogle Scholar
  38. 25.
    Deng, C.-X., Wynshaw-Boris, A., Shen, M. M., Daugherty, C., Ornitz, D. M., and Leder, P., Murine FGFR-1 is required for early post implantation growth and axial organization. Genes Dev.8 (1994) 3045–3057.PubMedGoogle Scholar
  39. 26.
    DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A., and Rajewsky, K., Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. natl Acad. Sci. USA92 (1995) 377–381.PubMedGoogle Scholar
  40. 27.
    Drago, J., Gerfen, C. R., Lachowicz, J. E., Steiner, H., Hollon, T. R., Love, P. E., Ooi, G. T., Ginsberg, A., Lee, E. J., Huang, S. P., Bartlett, P. F., Jose, P. A., Sibley, D. R., and Westphal, H., Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. natl Acad. Sci. USA91 (1994) 12564–12568.PubMedGoogle Scholar
  41. 28.
    Dranoff, G., Crawford, A. D., Sadelain, M., Ream, B., Rshid, A., Bronson, R. T., Dickerson, G. R., Bachurski, C. J., Mark, E. L., Whitsett, J. A., and Mulligan, R. C., Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science264 (1994) 713–716.PubMedGoogle Scholar
  42. 29.
    Erickson, H. P., Gene knockouts of c-src, transforming growth factor β 1 and tenascin suggest superfluous, non-functional expression of protein. J. Cell Biol.120 (1993) 1079–1081.CrossRefPubMedGoogle Scholar
  43. 30.
    Erickson, S. L., de Sauvage, F. J., Kikly, K., Carver-Moore, K., Pitts-Meek, S., Gillett, N., Sheehan, K. C. F., Schreiber, R. D., Goeddel, D. V., and Moore, M. W., Decreased sensitivity to tumor-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature372 (1994) 560–563.CrossRefPubMedGoogle Scholar
  44. 31.
    Ernfors, P., Lee, K.-F., and Jaenisch, R., Mice lacking brain derived neurotrophic factor develop with sensory deficits. Nature368 (1994) 147–150.CrossRefPubMedGoogle Scholar
  45. 32.
    Ernfors, P., Lee, K.-F., Kucera, J., and Jaenisch, R., Lack of neurotrophin-3 leads to deficiency in the peripheral nervous system and loss of limb proprioceptive afferents. Cell77 (1994) 503–512.CrossRefPubMedGoogle Scholar
  46. 33.
    Farese, R. V. Jr., Ruland, S. L., Flynn, L. M., Stokowski, R. P., and Young, S. G., Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc. natl Acad. Sci. USA92 (1995) 1774–1778.PubMedGoogle Scholar
  47. 34.
    Farinas, I., Jones, K. R., Backus, C., Wang, X.-Y., and Reichardt, L. F., Severe sensory and sympathetic deficits in mice lacking neutrophin-3. Nature369 (1994) 658–661.CrossRefPubMedGoogle Scholar
  48. 35.
    Fassler, R., Schnegelssberg, P. N. J., Dausman, J., Shinya, T., Muragaki, Y., McCarthy, M. T., Olsen, B. R., and Jaenisch, R., Mice lacking α 1 (IX) collagen develop noninflammatory degenerative joint disease. Proc. natl Acad. Sci. USA91 (1994) 5070–5074.PubMedGoogle Scholar
  49. 36.
    Favier, B., LeMeur, M., Chambon, P., and Dolle, P., Axial skeleton homeosis and forelimb malformations in Hoxd-11 mutant mice. Proc. natl Acad. Sci. USA92 (1995) 310–314.PubMedGoogle Scholar
  50. 37.
    Fehling, H. J., Swat, W., Laplace, C., Kuhn, R., Rajewsky, K., Muller, U., and von Boehmer, H., MCH class I expression in mice lacking the proteasome subunit LMP-7. Science265 (1994) 1234–1237.PubMedGoogle Scholar
  51. 38.
    Feldman, B., Poueymirou, W., Papioannou, V. E., DeChiara, T. M., and Goldfarb, M., Requirement of FGF-4 for postimplantation mouse development. Science267 (1995) 246–249.PubMedGoogle Scholar
  52. 39.
    Gatherer, D., Gene knockouts and murine development. Dev. Growth Differ.35 (1993) 365–370.CrossRefGoogle Scholar
  53. 40.
    Georgopoulos, K., Bigby, M., Wang, J.-H., Molnar, A., Wu, P., Winandy, S., and Sharpe, A., The IKaros gene is required for the development of all lymphoid lineages. Cell79 (1994) 143–156.CrossRefPubMedGoogle Scholar
  54. 41.
    Geppert, M., Bolshakov, V. Y., Siegelbaum, S. A., Takei K., De Camilli, P., Hammer, R. E., and Sudhof, T. C., The role of Rab3A in neurotransmitter release. Nature369 (1994) 493–497.CrossRefPubMedGoogle Scholar
  55. 42.
    Gomi, H., Yokoyama, T., Fujimoto, K., Ideda, T., Katoh, A., Itoh, T., and Itohara, S., Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron14 (1995) 29–41.CrossRefPubMedGoogle Scholar
  56. 43.
    Goulet, J. L., Snouwaert, J. N., Latour, A. M., Coffman, T. M., and Koller, B. H., Altered inflammatory responses in leukotriene-deficient mice. Proc. natl Acad. Sci. USA91 (1994) 12852–12856.PubMedGoogle Scholar
  57. 44.
    Grant, S. G. N., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., and Kandel, E. R., Imparied long term potentiation, spatial hearing and hippocampal development in fynmutant mice. Science258 (1992) 1903–1910.PubMedGoogle Scholar
  58. 45.
    Grant, S. G. N., Gene targeting and synaptic plasticity. Curr. Opin. Neurobiol.4 (1994) 687–692.CrossRefPubMedGoogle Scholar
  59. 46.
    Gu, H., Marth, J. D., Orban, P. C., Mossman, H., and Rajewsky, K., Deletion of a DNA polymerase β gene segment in T cells using cell-type specific gene targeting. Science265 (1994) 103–106.PubMedGoogle Scholar
  60. 47.
    Guillemot, F., Nagy, A., Auerbach, A., Rossant, J., and Joyner, A. L., Essential role of Mash-2 in extraembryonic development. Nature371 (1994) 333–336.CrossRefPubMedGoogle Scholar
  61. 48.
    Gurney, A. L., Carver-Moore, K., de Sauvage, F. J., and Moore, M. W., Thrombocytopenia in c-mbl deficient mice. Science265 (1994) 1445–1447.PubMedGoogle Scholar
  62. 49.
    Gurtner, G. C., Davis, V., Li, H., McCoy, M. J., Sharpe, A., and Cybulsky, M. I., Targeted disruption of the murine VCAM-1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev.9 (1995) 1–14.PubMedGoogle Scholar
  63. 50.
    Hashimoto, N., Watanabe, N., Furuta, Y., Tamemoto, H., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takeda, N., Ikawa, Y., and Aizawa, S., Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature370 (1994) 68–71.CrossRefPubMedGoogle Scholar
  64. 51.
    Hasty, P., Ramirez-solis, R., Krumlauf, R., and Bradley, A., Introduction of a subtle mutation into the hox-2.6 locus in embryonic stem cells. Nature350 (1991) 243–246.CrossRefGoogle Scholar
  65. 52.
    Healy, A. M., Rayburn, H. B., Rosenberg, R. D., and Weiler, H., Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. natl Acad. Sci. USA92 (1995) 850–854.PubMedGoogle Scholar
  66. 53.
    Homanics, G. E., de Silva, H. V., Osada, J., Zhang, S. H., Wong, W., borensztajn, J., and Maeda, N., Mild dyslipedemia in mice following targeted inactivation of the hepatic lipase gene. J. biol. Chem.270 (1995) 2974–2980.CrossRefPubMedGoogle Scholar
  67. 54.
    Horan, G. S. B., Debra, K. W., Wolgemuth, D. J., and Behringer, R. R., Homeotic transformation of cervical vertebrae in Hoxa-4 mutant mice. Proc. natl Acad. Sci. USA91 (1994) 12644–12648.PubMedGoogle Scholar
  68. 55.
    Hosoda, K., Hammer, R. E., Richardson, J. A., Baynash, A. G., Cheung, J. C., Giaid, A., and Yanagisawa, M., Targeted and natural (Piebald-Lethal) mutations of endothelin-β receptor gene produce megacolon associated with spotted coat color in mice. Cell79 (1994) 1267–1276.CrossRefPubMedGoogle Scholar
  69. 56.
    Hummler, E., Cole, T. J., Blendy, J. A., Ganss, R., Aguzzi, A., Schmid, W., Beerman, F., and Schutz, G., Targeted mutation of the CREB gene: Compensation within the CREB/ATF family of transcription factors. Proc. natl Acad. Sci. USA91 (1994) 5647–5651.PubMedGoogle Scholar
  70. 57.
    Jacks, T., Shih, T. S., Schmitt, E. M., Bronson, R. T., Bernards, A., and Weinberg, R. A., Tumor predisposition in mice heterozygous for a targeted mutation in NF1. Nature Genet.7 (1994) 353–361.CrossRefPubMedGoogle Scholar
  71. 58.
    John, S. W. M., Krege, J. H., Oliver, P. M., Hagaman, J. R., Hodgin, J. B., Pang, S. C., Flynn, T. G., and Smithies, O., Genetic decreases in atrial natriuretic peptide and saltsensitive hypertension. Science267 (1995) 679–681.PubMedGoogle Scholar
  72. 59.
    Jones, K. R., Farinas, I., Backus, C., and Reichardt, L. F., Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell76 (1994) 989–999.CrossRefPubMedGoogle Scholar
  73. 60.
    Jonsson, J., Carlsson, L., Edlund, T., and Edlund, H., Insulin-promoter-factor 1 is required for pancreas development in mice. Nature371 (1994) 606–609.CrossRefPubMedGoogle Scholar
  74. 61.
    Joyner, A. L., and Guillemot, F., Gene targeting and development of nervous system. Curr. Opin. Neurobiol.4 (1994) 37–42.CrossRefPubMedGoogle Scholar
  75. 62.
    Kaer, L. V., Ashton-Rickardt, P. G., Ploegh, H. L., and Tonegawa, S., TAP1 mutant mice and deficient in antigen presentation, surface class I molecules and CD48+ T cells. Cell71 (1992) 1205–1214.PubMedGoogle Scholar
  76. 63.
    Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K. J., Podack, E. R., Zinkernagel, R. M., and Hengartner, H., Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature369 (1994) 31–37.CrossRefPubMedGoogle Scholar
  77. 64.
    Kastner, P., Grondona, J. M., Mark, M. Gansmuller, A., LeMeur, M., Decimo, D., Vonesch, J.-L., Dolle, P., and Chambon, P., Genetic analysis of RXRα developmental function: convergence of RXR and RAR signalling pathways in heart and eye morphogenesis. Cell78 (1994) 987–1003.CrossRefPubMedGoogle Scholar
  78. 65.
    Klein, R., Silos-Santiago, I., Smeyne, R. J., Lira, S. A., Brambilla, R., Bryant, S., Zhang, L., Snider, W. D., and Barbacid, M., Disruption of the neurotrophin-3 receptor trkc eliminates Ia muscle afferents and results in abnormal movements. Nature368 (1994) 249–251.CrossRefPubMedGoogle Scholar
  79. 66.
    Kohmura, N., Yagi, T., Tomooka, Y., Oyanagi, M., Kominami, R., Takeda, N., Chiba, J., Ikawa, Y., and Aizawa, S., A novel nonreceptor tyrosine kinase, Srm: cloning and targeted disruption. Molec. cell. Biol.14 (1994) 6915–6925.PubMedGoogle Scholar
  80. 67.
    Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., Zinkerhagel, R., Bluethmann, H., and Köhler G., Impaired immune and acute-phase responses in interleukin-6 deficient mice. Nature368 (1994) 339–342.CrossRefPubMedGoogle Scholar
  81. 68.
    Kumar, S., Clarke, A. R., Hooper, M. L., Horne, D. S., Law, A. J. R., Leaver, J., Springbett, A., Stevenson, E., and Simsons, J. D., Milk composition and lactation of β-caseindeficient mice. Proc. natl Acad. Sci. USA91 (1994) 6138–6142.PubMedGoogle Scholar
  82. 69.
    Kurihara, Y., Kurihara, H., Suzuki, H., Kodama, T., Maemura, K., Nagai, R., Oda, H., Kuwaki, T., Cao, W.-H., Kamada, N., Jishage, K., Ouchi, Y., Azuma, S., Toyoda, Y., Ishikawa, T., Kumada, M., and Yazaki, Y., Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature368 (1994) 703–710.CrossRefPubMedGoogle Scholar
  83. 70.
    Kwee, L., Baldwin, H. S., Shen, H. M., Stewart, C. L., Buck, C., Buck, C. A., and Labon, M. A., Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development121 (1995) 489–503.PubMedGoogle Scholar
  84. 71.
    Lampron, C., Rochette-Egly, C., Gorry, P., Dolle, P., Mark, M., Lufkin, T., LeMeur, M., and Chambon, P., Mice deficient in cellular retionic acid binding protein II (CRABP II) or in both CRABPI and CRABPII are essentially normal. Development121 (1995) 539–548.PubMedGoogle Scholar
  85. 72.
    Larue, L., Ohsugi, M., Hirchenhain, J., and Kemler, R., E Cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. natl Acad. Sci. USA91 (1994) 8263–8267.PubMedGoogle Scholar
  86. 73.
    Leveen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E., and Betscholtz, C., Mice deficient for PDGFβ show renal, cardiovascular and hematological abnormalities. Genes Dev.8 (1994) 1875–1887.PubMedGoogle Scholar
  87. 74.
    Li, P., Allen, H., Benerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., Tonne, E., Tracey, D., Wardwell, S., Wei, F.-Y., Wong, W., Kamen, R., and Seshadri, T., Mice deficient in IL-1β-converting enzyme are defective in production of mature IL1β and resistant to endotoxic shock. Cell80 (1995) 401–411.CrossRefPubMedGoogle Scholar
  88. 75.
    Li, T., Erzurumlu, R. S., Chen, C., Jhaveri, S., and Tonegawa, S., Whisker-related neuronal patterns fail to develop in the trigeminal nuclei of NMDAR1 knockout mice. Cell76 (1994) 427–437.CrossRefPubMedGoogle Scholar
  89. 76.
    Lohnes, D., Mark, M., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., Gansmuller, A., and Chambon, P., Function of the retinoic and receptors (RARs) during development. I. Development120 (1994) 2723–2748.PubMedGoogle Scholar
  90. 77.
    Lowell, C. A., Soriano, P., and Varmus, H. E., Functional overlap in the Src gene family. Inactivation of hck and fgr impairs natural immunity. Genes Dev.8 (1994) 387–398.PubMedGoogle Scholar
  91. 78.
    Lowin, B., Beermann, F. Schmidt, A., and Tschopp, J., A null mutation in the perforin gene impairs cytolytic T lymphocyte-and natural killer cell-mediated cytotoxicity. Proc. natl Acad. Sci. USA91 (1994) 11571–11575.PubMedGoogle Scholar
  92. 79.
    Maeda, N., Li, H., Lee, D., Oliver, P., Quarfordt, S. H., and Osada, J., Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J. biol. Chem.269 (1994) 23610–23616.PubMedGoogle Scholar
  93. 80.
    Magyar, J. P., Bartsch, U., Wang, Z.-Q., Howells, N., Aguzzi, A., Wagner, E. F., and Schachner, M., Degeneration of neural cells in the central nervous system of mice deficient in the gene for the adhesion molecule on glia, the β2 subunit of murine Na, K-ATPase. J. Cell Biol.127 (1994) 835–845.CrossRefPubMedGoogle Scholar
  94. 81.
    Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., Sasaki, H., Hiroi, K., Nakamura, Y., Shigemoto, R., Takada, M., Nakamura, K., Nakao, K., Katsuki, M., and Nakanishi, S., Specific deficit of ON response in visual transmission by targeted disruption of the MGUR6 gene. Cell80 (1995) 757–765.CrossRefPubMedGoogle Scholar
  95. 82.
    Mendelsohn, C., Mark, M., Dolle, P., Dierich, A., Gaub, M. P., Krust, A., Lampron, C., and Chambon, P., Retinoic and receptor β2 (RARβ2) null mutant mice appear normal. Devl Biol.166 (1994) 246–258.CrossRefGoogle Scholar
  96. 83.
    Mendelsohn, C., Lohnes, D., Decimo, D., Lufkin, T., LeMeur, M., Chambon, P., and Mark, M., Function of the retinoic and receptors (RARs) during development. II. Development120 (1994) 2749–2771.PubMedGoogle Scholar
  97. 84.
    Montag, D., Giese, K. P., Bartsch, V., Martini, R., Lang, Y., Bluthmann, H., Karthigasan, J., Kirschner, D. a., Wintergerst, E. S., Nave, K.-A., Zielasek, J., Toyka, K. V., Lipp, H.-P., and Schachner, M., Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron13 (1994) 229–246.CrossRefPubMedGoogle Scholar
  98. 85.
    Mortensen, R. M., Zubiaur, M., Neer, E. J., and Seidman, J. G., Embryonic stem cells lacking a functional inhibitory G protein subunit (αi2) produced by gene targeting of both alleles. Proc. natl. Acad. Sci. USA88 (1991) 7036–7040.PubMedGoogle Scholar
  99. 86.
    Motoyama, N., Wang, F., Roth, K. A., Sawa, H., Nakayama, K.-I., Nakayama, K., Negishi, I., Senju, S., Zhang, Q., Fujie, S., and Loh, D. Y., Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science267 (1995) 1506–1510.PubMedGoogle Scholar
  100. 87.
    Muglia, L., Jacobson, L., Dikkes, P., and Majzoub, J. A., Corticotrophin releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature373 (1995) 427–432.CrossRefPubMedGoogle Scholar
  101. 88.
    Muller, U., Cristina, N., Li, Z.-W., Wolfer, D. P., Lipp, H.-P., Rulicke, T., Brandner, S., Aguzzi, A., and Weissmann, C., Behavioral and anatomical deficits in mice homozygous for a modified β-amyloid precursor protein gene. Cell79 (1994) 755–765.CrossRefPubMedGoogle Scholar
  102. 89.
    Noakes, P. G., Gautam, M., Mudd, J., Sanes, J. R., and Merlie, J. P., Aberrant differentiation of neuromuscular junctions in mice lacking S-laminin-laminin β2. Nature374 (1995) 258–262.CrossRefPubMedGoogle Scholar
  103. 90.
    O'Dell, T. J., Huang, P. L., Dawson, T. M., Dinermann, J. L., Snyder, S. H., Kandel, E. R., and Fishman, M. C., Endothelial NOS and blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science265 (1994) 542–546.PubMedGoogle Scholar
  104. 91.
    Oettgen, H. C., Martin, T. R., Wynshaw-Boris, A., Deng, C., Drazen, J. M., Drazen, J. M., and Leder, P., Active anaphylaxis in IgE deficient mice. Nature370 (1994) 367–370.CrossRefPubMedGoogle Scholar
  105. 92.
    Ohno, H., Goto, S., Taki, S., Shirasa wa, T., Nakano, H., Miyatake, S., Aoe, T., Ishida, Y., Maeda, H., Shirai, T., Rajewski, K., and Saito, T., Targeted disruption of the CD3 eta locus causes high lethality in mice: modulation of Oct-1 transcripton on the opposite strand. EMBO J13 (1994) 1157–1165.PubMedGoogle Scholar
  106. 93.
    Picciotto, M. R., Zoli, M., Lena, C., Bessis, A., Lallemand, Y., LeNovere, N., Vincent, P., Pich, E. M., Brulet, P., and Changeux, J.-P., Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature374 (1995) 65–67.PubMedGoogle Scholar
  107. 94.
    Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Rodan, G. A., and Costantini, F., Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J.13 (1994) 1189–1196.PubMedGoogle Scholar
  108. 95.
    Pollock, J. D., Williams, D. A., Gifford, M. A. C., Li, L. L., Du, X., Fisherman, J., Orkin, S. H., Doerschuk, C. M., and Dinauer, M. C., Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nature Genet.9 (1995) 202–209.CrossRefPubMedGoogle Scholar
  109. 96.
    Rancourt, D. E., Tsuzuki, T., and Capecchi, M. R., Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev.9 (1995) 108–122.PubMedGoogle Scholar
  110. 97.
    Reis, L. F. L., Ruffner, H., Stark, G., Aguet, M., and Weissmann, C., Mice devoid of interferon regulatory factor 1 (IRF-1) show normal expression of type 1 interferon genes. EMBO J.13 (1994) 4798–4806.PubMedGoogle Scholar
  111. 98.
    Riethmacher, D., Brinkmann, V., and Birchmeier, C., A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc. natl Acad. Sci. USA92 (1995) 855–859.PubMedGoogle Scholar
  112. 99.
    Roberts, C. W. M., Shutter, J. R., and Korsmeyer, S. J., Hox 11 controls the genesis of the spleen. Nature368 (1994) 747–749.CrossRefPubMedGoogle Scholar
  113. 100.
    Rosati, R., Horan, G. S. B., Pinero, G. J., Garofalo, S., Keene, D. R., Horton, W. A., Vuorio, E., de Crombrugghe, B., and Behringer, R. R., Normal long bone growth and development in type X collagen null mice. Nature Genet.8 (1994) 129–135.CrossRefPubMedGoogle Scholar
  114. 101.
    Rossant, J., Gene disruption in mammals. Curr. Opin. Genet. Dev.1 (1991) 236–240.CrossRefPubMedGoogle Scholar
  115. 102.
    Rubinstein, M., Japon, M. a., and Low, M. J., Introduction of a point mutation into the mouse genome by homologous recombination in embryonic stem cells using a replacement type vector with a selectable marker. Nucleic Acids Res.21 (1993) 2613–2617.PubMedGoogle Scholar
  116. 103.
    Rudnicki, M. A., Schnegelsber, P. N. J., Stead, R. M., Braun, T., Arnold, H. H., and Jaenisch, R., Myo D and myf-5 is required for the formation of the skeletal muscle. Cell75 (1993) 1351–1359.CrossRefPubMedGoogle Scholar
  117. 104.
    Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y., Sugiyama, H., and Mishina, M., Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ∈1 subunit. Nature373 (1995) 151–155.CrossRefPubMedGoogle Scholar
  118. 105.
    Satoka, I., and Maas, R., Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet.6 (1994) 348–355.CrossRefPubMedGoogle Scholar
  119. 106.
    Saudou, F., Amara, D. A., Belzung, C., Dierich, A., LeMeur, M., Ramboz, S., Segu, L., Misslin, R., Buhot, M.-C., and Hen, R., Enhanced aggressive behavior in mice lacking 5HT1B receptor. Science265 (1994) 1875–1878.PubMedGoogle Scholar
  120. 107.
    Sauer, B., Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Meth. Enzym.225 (1993) 890–900.PubMedGoogle Scholar
  121. 108.
    Schinkel, A. H., Smith, J. J. M., Van Telligen, O., Beijnen, J. H., Wagenaar, E., Van Deemter, L., Mol, C. A. A. M., Van der Valk, M. A., Robanus-Maandag, E. C., te Riele, H. P. J., Berns, A. J. M., and Borst, P., Disruption of the mouse mdrla p-glycoprotein gene leads to a deficiency in the bloodbrain-barrier and to increased sensitivity to drugs. Cell77 (1994) 491–502.CrossRefPubMedGoogle Scholar
  122. 109.
    Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E., and Birchmeier, C., Scatter factor/hepatocyte growth factor is essential for liver development. Nature373 (1995) 699–702.CrossRefPubMedGoogle Scholar
  123. 110.
    Seifert, R. A., Hart, C. E., Phillips, P. E., Forstrom, J. W., Ross, R., Muray, M. J., and Bowen-Pope, D. F., Two different subunits associate to create isoform specific platelet-derived growth factor receptors. J. biol. Chem.264 (1989) 8771–8778.PubMedGoogle Scholar
  124. 111.
    Sha, W. C., Liou, H.-C., Tuomanen, E. I., and Baltimore, D., Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell80 (1995) 321–330.CrossRefPubMedGoogle Scholar
  125. 112.
    Shastry, B. S., More to learn from gene knockouts. Molec. cell Biochem.136 (1994) 171–182.CrossRefPubMedGoogle Scholar
  126. 113.
    Shesely, E. G., Kim, H.-S., Shehee, W. R., Papayannopoulou, T., Smithies, O., and Popovich, B. W., Correction of a human βS-globin gene by gene targeting. Proc. natl Acad. Sci. USA88 (1991) 4294–4298.PubMedGoogle Scholar
  127. 114.
    Shivadasani, R. A., Mayer, E. L., and Orkin, S. H., Absence of blood formation in mice lacking the T cell leukaemia oncoprotein tal-1/SCL. Nature373 (1995) 432–434.CrossRefPubMedGoogle Scholar
  128. 115.
    Smeyne, R. J., Klein, R., Schnapp, A., Long, L. K., Bryant, S., Lewin, A., Lira, S. A., and Barbacid, M., Severe sensory and sympathetic neuropathies in mice carrying a disrupted trk/NGF receptor gene. Nature368 (1994) 246–249.CrossRefPubMedGoogle Scholar
  129. 116.
    Smithies, O., Animal models of human genetic diseases. Trends Genet.9 (1993) 112–116.CrossRefPubMedGoogle Scholar
  130. 117.
    Smithies, O., and Kim, H.-S., Targeted gene duplication and disruption for analyzing quantitative genetic traits in mice. Proc. natl Acad. Sci. USA91 (1994) 3612–3615.PubMedGoogle Scholar
  131. 118.
    Snider, W. D., Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell77 (1994) 627–638.CrossRefPubMedGoogle Scholar
  132. 119.
    Soriano, P., Abnormal kidney development and hematological disorders in PDGFβ receptor mutant mice. Genes Dev.8 (1994) 1888–1896.PubMedGoogle Scholar
  133. 120.
    Spyropoulous, D. D., and Capecchi, M. R., Targeted disruption of the even-skipped gene evxl, causes early postimplantation lethality of the mouse conceptus. Genes Dev.8 (1994) 1949–1961.PubMedGoogle Scholar
  134. 121.
    Stacey, A., Schnieke, A., McWhir, J., Cooper, J., Colman, A., and Melton, D. W., Use of double-replacement gene targeting to replace the murine α-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Molec. cell. Biol.14 (1994) 1009–1016.PubMedGoogle Scholar
  135. 122.
    Stanley, E., Lieschke, G. J., Grail, D., Metcalf, D., Hodgson, G., Gall, J. A. M., Maher, D. W., Cebon, J., Sinickas, V., and Dunn, A. R., Granulocyte-macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. natl Acad. Sci. USA91 (1994) 5592–5596.PubMedGoogle Scholar
  136. 123.
    Stark, K., Vainio, S., Vassileva, G., and McMahon, A. P., Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature372 (1994) 679–683.CrossRefPubMedGoogle Scholar
  137. 124.
    Stein, P. L., Lee, H.-M., Rich, S., and Soriano, P., pp59fyn mutant mice display different signalling in thymocytes and peripheral T cells. Cell70 (1992) 741–750.CrossRefPubMedGoogle Scholar
  138. 125.
    Stein, P. L., Vogel, H., and Soriano, P., Combined deficiencies of Src, Fyn and Yes tyrosine kinases in mutant mice. Genes Dev.8 (1994) 1999–2007.PubMedGoogle Scholar
  139. 126.
    Steinmetz, M., and Haas, W., Recent experiments with MHC knockout mice: More questions than answers. BioEssays15 (1993) 613–615.CrossRefPubMedGoogle Scholar
  140. 127.
    Stinnakre, M. G., Vilotte, J. L., Soulier, S., and Mercier, J. c., Creation and phenotypic analysis of α-lactalbumin-deficient mice. Proc. natl Acad. Sci. USA91 (1994) 6544–6548.PubMedGoogle Scholar
  141. 128.
    Stritrmatter, S. M., Frankhauser, C., Huang, P. L., Mashimo, H., and Fishman, M. C., Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell80 (1995) 445–452.CrossRefPubMedGoogle Scholar
  142. 129.
    Stumpo, D. J., Bock, C. B., Tuttle, J. S., and Blackshear, P. J., MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc. natl Acad. Sci. USA92 (1995) 944–948.PubMedGoogle Scholar
  143. 130.
    Takeshima, H., Iino, M., Takekura, H., Nishi, M., Kuno, J., Minowa, O., Takano, H., and Noda, T., Excitation-contraction uncoupling and mascular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature369 (1994) 556–559.CrossRefPubMedGoogle Scholar
  144. 131.
    Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y., Ikawa, Y., Kasuga, M., Yazaki, Y., and Aizawa, S, Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature372 (1994) 182–186.CrossRefPubMedGoogle Scholar
  145. 132.
    Tanaka, T., Akira, S, Yoshida, K., Umemoto, M., Yoneda, Y., Shirafugi, N., Fujiwara, H., Suematsu, S., Yoshida, N., and Kishimoto, T., Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell80 (1995) 353–361.CrossRefPubMedGoogle Scholar
  146. 133.
    Tanimoto, K., Sugiyama, F., Goto, Y., Ishida, J., Takimoto, E., Yagami, K., Fukamizu, A., and Murakami, K., Angiotensinogen-deficient mice with hypotension. J. biol. Chem.269 (1994) 31334–31337.PubMedGoogle Scholar
  147. 134.
    Tautz, D., Redundancies, development and the flow of information. BioEssays14 (1992) 263–266.CrossRefPubMedGoogle Scholar
  148. 135.
    te Riele, H., Maandag, E. R., Clarke, A., Hooper, M., and Berns, A., Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature348 (1990) 649–651.CrossRefPubMedGoogle Scholar
  149. 136.
    te Riele, H., Maandag, E. R., and Berns, A., Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. natl Acad. Sci. USA89 (1992) 5128–5132.PubMedGoogle Scholar
  150. 137.
    Tessarollo, L., Vobel, K. S. Palko, M. E., Reid, S. W., and Parada, L. F., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc. natl Acad. Sci. USA91 (1994) 11844–11848.PubMedGoogle Scholar
  151. 138.
    Thomas, J. H., Thinking about genetic redundancy. Trends Genet.9 (1993) 395–399.CrossRefPubMedGoogle Scholar
  152. 139.
    Togni, P. D., Goellner, J., Ruddle, N. H., Streeter, P. R., Fick, A., Mariathason, S., Smith, S. C., Carlson, R., Shornick, L. P., Strauss-Schoenberger, J., Russell, J. H., Karr, R., and Chaplin, D. D., Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science264 (1994) 703–706.PubMedGoogle Scholar
  153. 140.
    Tsai, F.-Y., Keller, G., Kuo, F. C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F. W., and Orkin, S. H., An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature371 (1994) 221–226.CrossRefPubMedGoogle Scholar
  154. 141.
    Uehara, Y., Minowa, O., Mori, C., Shiota, K., Kuno, J., Noda, T., and Kitamura, N., Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature373 (1995) 702–705.CrossRefPubMedGoogle Scholar
  155. 142.
    Umanoff, H., Edelmann, W., Pellicer, A., and Kucherlapati, R., The murine N-ras gene is not essential for growth and development. Proc. natl Acad. Sci. USA92 (1995) 1709–1713.PubMedGoogle Scholar
  156. 143.
    Urbanek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F., and Busslinger, M., Complete block of early β cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell79 (1994) 901–912.CrossRefPubMedGoogle Scholar
  157. 144.
    Valancius, V., and Smithies, O., Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Molec. cell. Biol.11 (1991) 1402–1408.PubMedGoogle Scholar
  158. 145.
    Verbeek, S., Izou, D., Hofhuis, F., Robanus-Maandag, E., te Riele, H., van de Wetering, M., Oosterwegel, M., Wilson, A., MacDonald, H. R., and Clevers, H., An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature374 (1995) 70–74.CrossRefPubMedGoogle Scholar
  159. 146.
    Walsh, C. M., Matloubian, M., Liu, C.-C., Ueda, R., Kurahara, C. G., Christensen, J. L., Huang, M. T. F., Ding-E Young, J., Ahmed, R., and Clark, W. R., Immune function in mice lacking the perforin gene. Proc. natl Acad. Sci. USA91 (1994) 10854–10858.PubMedGoogle Scholar
  160. 147.
    Wang, Z.-Q., Fung, M. R., Barlow, D., and Wagner, E. F., Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature372 (1994) 464–467.CrossRefPubMedGoogle Scholar
  161. 148.
    Watanabe, M., Osada, J., Aratani, Y., Kluckman, K., Reddick, R., Malimow, M. R., and Maeda, N., Mice deficient in cystathionine β-synthase: Animal models for mild and severe homocyst(e)inemia. Proc. natl Acad. Sci. USA92 (1995) 1585–1589.PubMedGoogle Scholar
  162. 149.
    Weih, F., Carrasco, D., Durham, S. K., Barton, D. S., Rizzo, C. A., Ryseck, R.-P., Lira, S. A., and Bravo, R., Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of rel B, a member of the NF-kappa B/rel family. Cell80 (1995) 331–340.CrossRefPubMedGoogle Scholar
  163. 150.
    Weinstein, D. C., Altaba, A. R., Chen, W. S., Hoodless, P., Prezioso, V. R., Jessell, T. M. and Darnell, D. E. Jr., The winged-helix transcription factor HNF-3β is required for notochord development in the mouse embryo. Cell78 (1994) 575–588.CrossRefPubMedGoogle Scholar
  164. 151.
    Wu, H., Liu, X., and Jaenisch, R., Double replacement: strategy for efficient introduction of subtle mutations into the murine colla-1 gene by homologous recombination in embryonic stem cells. Proc. natl Acad. Sci. USA91 (1994) 2819–2823.PubMedGoogle Scholar
  165. 152.
    Wu, Z.-L., Thomas, S. A., Villacres, E. G., Xia, Z., Simmons, M. L., Chavkin, C., Palmiter, R. D., and Storm, D. L., Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. natl Acad. Sci. USA92 (1995) 220–224.PubMedGoogle Scholar
  166. 153.
    Wurst, W., Auerbach, A. B., and Joyner, A. L., Multiple developmental defects in engrailed-1 mutant mice: an early mid-hind brain deletion and patterning defects in forelimbs and sternum. Development120 (1994) 2065–2075.PubMedGoogle Scholar
  167. 154.
    Xu, M., Moratalla, R., Gold, L. H., Horoi, N., Koob, G. F., Graybiel, A. M., and Tonegawa, S., Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorpin and in dopamine-mediated behavioral responses. Cell79 (1994) 729–742.CrossRefPubMedGoogle Scholar
  168. 155.
    Yamaguchi, T. P., Harpal, K., Henkemeyer, M., and Rossant, J., fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev.8 (1994) 3032–3044.PubMedGoogle Scholar
  169. 156.
    Yamanaka, S., Johnson, M. D., Grinsberg, A., Westphal, H., Crawley, J. N., Taniike, M., Suzuki, K., and Proia, R. I., Targeted disruption of the Hexa gene results in mice with biochemical and pathological features of Tay-Sachs disease. Proc natl Acad. Sci. USA91 (1994) 9975–9979.PubMedGoogle Scholar
  170. 157.
    Yu, P., Kosco-Vilbois, M., Richards, M., Kohler, G., and Lamers, M. C., Negative feedback regulation of IgE synthesis by murine CD23. Nature369 (1994) 753–756.CrossRefPubMedGoogle Scholar
  171. 158.
    Zhang, R., Tsai, F.-Y., and Orkin, S. H., Hematopoietic development of Vav−/− mouse embryonic stem cells. Proc. natl Acad. Sci. USA91 (1994) 12755–12759.PubMedGoogle Scholar
  172. 159.
    Zhuang, Y., Soriano, P., and Weintraub, H., The helix-loophelix gene E2A is required for β cell formation. Cell79 (1994) 875–884.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • B. S. Shastry
    • 1
  1. 1.Eye Research InstituteOakland UniversityRochester(USA)

Personalised recommendations