Advertisement

Experientia

, Volume 29, Issue 9, pp 1086–1088 | Cite as

Transformation of chemical into mechanical energy by glycerol-extracted fibres of insect flight muscles in the absence of nucleosidetriphosphate-hydrolysis

  • H. J. Kuhn
Article

Keywords

Mechanical Energy Flight Muscle Insect Flight Insect Flight Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Glycerin-extrahierte Faserbündel von fibrillären Insektenflugmuskeln (Lethocerus maximus) leisten reversible mechanische Arbeit, wenn sie in Rigorlösung entdehnt werden, durch Zugabe von AMPPNP8 isometrisch relaxieren, in der AMPPNP-Lösung gedehnt werden und durch Entzug von AMPPNP zur isometrischen Kontraktion gebracht werden. Dabei wird die mechanische Arbeit quantitativ aus chemischer Energie (Verdünnungsenergie des Analogs) produziert; dies ist nur möglich, wenn AMPPNP dehnungsinduziert von den Fasern absorbiert wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kuhn, Experientia5, 318 (1949).Google Scholar
  2. 2.
    A. Katchalsky, Experientia5, 319 (1949).Google Scholar
  3. 3.
    J. W. Breitenbach andH. Karlinger, Mh. Chem.80, 311 (1949).Google Scholar
  4. 4.
    W. Kuhn, A. Ramel, D. H. Walters, G. Ebner andH. J. Kuhn, Fortschr. Hochpolymerforsch.1, 540 (1960).Google Scholar
  5. 5.
    W. Kuhn, G. Ebner, H. J. Kuhn andD. H. Walters, Helv. chim. Acta44, 326 (1961).Google Scholar
  6. 6.
    H. J. Kuhn, H. Schröder andJ. C. Rüegg, Experientia28, 510 (1972).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Chaplain andB. Frommelt, Kybernetics5, 1 (1968).CrossRefGoogle Scholar
  8. 8.
    AMPPNP=adenylimidodiphosphate.Google Scholar
  9. 9.
    B. R. Jewell andJ. C. Rüegg, Proc. R. Soc. B164, 428 (1966).Google Scholar
  10. 10.
    G. J. Steiger, Pflügers Arch.330, 347 (1971).CrossRefGoogle Scholar
  11. 11.
    D. C. S. White, J. Physiol.208, 583 (1970).PubMedGoogle Scholar
  12. 12.
    R. G. Yount, D. Ojala andD. Babock, Biochemistry10, 2490 (1971).PubMedGoogle Scholar
  13. 13.
    This formulation is typical for the ‘engine approach’ in thermodynamics28. The meaning of the statement4–7 is that under isothermal and reversible conditions the cyclically effected work performances must be compensated by the supply of an equal amount of free energy. In the absence of energy providing reactions (and of contamination processes) free energy is to be supplied from immersion solutions (corresponding to reservoirs of the ‘engine’) while AMPPNP is transported from the 5 mM solution via the ‘engine’ to rigor solution. It is the (equivalent) osmotic work released by this dilution process which is quantitatively transformed by the ‘engine’ into mechanical work29.Google Scholar
  14. 14.
    J. W. Gibbs,The scientific papers of J. W. Gibbs, (Dover publications Inc. New York 1961) Transactions of the Connecticut Academy 1875.Google Scholar
  15. 15.
    A. Katchalsky inContractile Polymers (Ed.A. Wassermann; Pergamon Press, Oxford 1959) p. 1.Google Scholar
  16. 16.
    W. G. Pohl, H. J. Kuhn andW. Kuhn, Z. Naturf.6 756 (1966).Google Scholar
  17. 17.
    W. Kuhn, I. Toth, H. J. Kuhn, Helv. chim. Acta45, 2327 (1962).Google Scholar
  18. 18.
    G. Beinbreich, H. J. Kuhn andJ. C. Rüegg, Experientia28, 511 (1972).PubMedGoogle Scholar
  19. 19.
    J. Barrington Leigh, K. C. Holmes, H. G. Mannherz, G. Rosenbaum, F. Eckstein andR. Goody, Cold Spring Harb. Symp. quant. Biol. 1972,37, 443 (1973).Google Scholar
  20. 20.
    R. W. Lymn andH. E. Huxley, Cold Spring Harb. Symp. quant. Biol.37, 449 (1973).Google Scholar
  21. 21.
    C. G. Dos Remedios, R. G. Yount andM. F. Morales, Proc. natn. Acad. Sci.69, 2542 (1972).Google Scholar
  22. 22.
    M. K. Reedy, K. C. Holmes andT. R. Tregear, Nature207, 1276 (1965).PubMedGoogle Scholar
  23. 23.
    R. A. Chaplain andR. T. Tregear, J. molec. Biol.21, 275 (1966).CrossRefPubMedGoogle Scholar
  24. 24.
    R. W. Lymn andE. W. Taylor, Biochemistry10, 4617 (1971).CrossRefPubMedGoogle Scholar
  25. 25.
    D. R. Trentham, R. G. Bardsley andJ. F. Eccleston, Biochem. J.126 (1972).Google Scholar
  26. 26.
    J. Meixner andG. F. Reik,Handbuch der Physik III/2, (Ed.S. Flügge; Springer-Verlag, Berlin 1959).Google Scholar
  27. 27.
    W. O. Fenn, J. Physiol.58, 175 (1924).Google Scholar
  28. 28.
    M. W. Zemansky, inHeat and Thermodynamics (McGraw Hill, Tokyo 1957).Google Scholar
  29. 29.
    W. Kuhn, A. Ramel andD. H. Walters, inContractile Polymers, (Ed.A. Wassermann; Pergamon Press, Oxford 1959), p. 54.Google Scholar

Copyright information

© Birkhäuser Verlag 1973

Authors and Affiliations

  • H. J. Kuhn
    • 1
  1. 1.Institute of Cell PhysiologyRuhr-UniversityBochum-Querenburg(Germany)

Personalised recommendations