Skip to main content
Log in

Phagocytes use oxygen to kill bacteria

  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alonso, F., Gil, M. G., Sanchez-Crespo, M., and Mato, J. M., Activation of 1-alkyl-2-lysoglycero-3-phosphocholine. Acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes. J. biol. Chem.257 (1982) 3376–3378.

    Google Scholar 

  2. Babior, B. M., Oxygen-dependent microbial killing by phagocytes. New Engl. J. Med.298 (1978) 659–668.

    Google Scholar 

  3. Babior, B. M., Curnutte, J. T., and McMurrich, B. J., The particulate superoxide-forming system from human neutrophils: Properties of the system and further evidence supporting its participation in the respiratory burst. L. clin. Invest.58 (1976) 989–996.

    Google Scholar 

  4. Babior, B. M., and Kipnes, R. S., Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement. Blood50 (1977) 517–524.

    Google Scholar 

  5. Babior, B. M., Kipnes, R. S., and Curnutte, J. T., Biological defense mechanisms: the production by leukocytes of superoxide, a potential bactericidal agent. J. clin. Invest.52 (1973) 741–744.

    Google Scholar 

  6. Babior, G. L., Rosin, R. E., McMurrich, B. J., Peters, W. A., and Babior, B. M., Arrangement of the respiratory burst oxydase in the plasma membrane of the neutrophils. J. clin. Invest.67 (1981) 1724–1728.

    Google Scholar 

  7. Baggiolini, M., Schnyder, J., Bretz, U., Dewald, B., and Ruch, W., Cellular mechanisms of proteinase release from inflammatory cells and the degradation of extracellular proteins. Ciba Found. Symp.75 (1980) 105–121.

    Google Scholar 

  8. Bainton, D. F., The cells of inflammation: a general view, in: Handbook of inflammation, vol. 2, pp. 1–25. Ed. G. Weissmann. Elsevier/North Holland Biomedical Press, Amsterdam/New York/Oxford 1980.

    Google Scholar 

  9. Baldridge, C. W., and Gerrard, R. W., The extra respiration of phagocytosis. Am. J. Physiol.103 (1933) 235–236.

    Google Scholar 

  10. Blackwell, G. J., Phospholipase A2 and platelet aggregation, in: Advances in Prostaglandin and Thromboxane Research, vol. 3, pp. 137–142. Ed. Galli et al. Raven Press, New York 1978.

    Google Scholar 

  11. Borregaard, N., Heiple, J. M., Simons, E. R., and Clark, R. A., Changes in subcellular distribution of cytochrome b. J. Cell Biol.97 (1983) 52–61.

    Google Scholar 

  12. Bretz, U., and Baggiolini, M., Biochemical and morphological characterization of azurophil and specific granules of human neutrophillic polymorphonuclear leukocytes. J. Cell Biol.63 (1974) 251–269.

    Google Scholar 

  13. Brumfitt, W., and Glynn, A. A., Intracellular killing ofMicrococcus lysodeikticus by macrophages and polymorphonuclear leucocytes: A comparative study. Br. J. exp. Path.42 (1961) 408–423.

    Google Scholar 

  14. Cramer, R., Soranzo, M. R., Dri, P., Rottini, G. D., Bramezza, M., Cirilli, S., and Patriarca, P., Incidence of myeloperoxidase deficiency in an area of North Italy: biochemical and functional studies. Br. J. Hemat.51 (1982) 81–87.

    Google Scholar 

  15. Cross, A. R., Jones, O. T. G., Garcia, R., and Segal, A. W., The subcellular localization of ubiquinone in human neutrophils. Biochem. J. (1984) in press.

  16. DeChatelet, L. R., McCall, C. E., McPhail, L. C., and Johnston, R. B., Superoxide dismutase activity in leukocytes. J. clin. Invest.53 (1974) 1197–1201.

    Google Scholar 

  17. Dewald, B., Baggiolini, M., Curnutte, J. T., and Babior, B. M., Subcellular localization of the superoxide-forming enzyme in human neutrophils. J. clin. Invest.63 (1979) 21–29.

    Google Scholar 

  18. Elsbach, P., Weiss, J., Franson, R. C., Beckerdite-Quagliata, S., Schneider, A., and Harris, L., Separation and purification of a potent bactericidal/permeability-increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes. Observations on their relationship. J. biol. Chem.254 (1979) 11000–11009.

    Google Scholar 

  19. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. H., Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature286 (1980) 264–265.

    Google Scholar 

  20. Gabig, T. G., Schervish, E. W., and Santinga, J. T., Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils. J. biol. Chem.257 (1982) 4114–4119.

    Google Scholar 

  21. Garcia, R. C., and Segal, A. W., Changes in the subcellular distribution of the cytochrome b on stimulation of human neutrophils. Biochem. J.219 (1984) 233–242.

    Google Scholar 

  22. Gennaro, R., Dewald, B., Horisberger, U., Gubler, H. U., and Baggiolini, M., A novel type of cytoplasmic granule in bovine neutrophils. J. Cell Biol.96 (1983) 1651–1661.

    Google Scholar 

  23. Goldstein, I. M., Malmsten, C. L., Kindahl, J., Kaplan, H. B., Radmark, O., Samuelsson, B., and Weissmann, C., Thromboxyne generation by human peripheral blood polymorphonuclear leukocytes. J. exp. Med.148 (1978) 787–792.

    Google Scholar 

  24. Hirsch, J. G., Studies of the bactericidal action of phagocytin. J. exp. Med.103 (1956) 613–621.

    Google Scholar 

  25. Holmes, B., Pape, A. R., and Good, R. A., Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J. clin. Invest.46 (1967) 1422–1432.

    Google Scholar 

  26. Iyer, G. Y. N., Islam, D. M. F., and Quastel, J. H., Biochemical aspects of phagocytosis. Nature192 (1961) 535–541.

    Google Scholar 

  27. Jensen, M. S., and Bainton, D. F., Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte. J. Cell Biol.56 (1973) 379–388.

    Google Scholar 

  28. Klebanoff, S. J., Iodmation of bacteria: A bactericidal mechanism. J. exp. Med.126 (1967) 1063–1078.

    Google Scholar 

  29. Klebanoff, S. J., Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system. J. biol. Chem.249 (1974) 3724–3728.

    Google Scholar 

  30. Klebanoff, S. J., Anti-microbial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin. Hemat.12 (1975) 117–142.

    Google Scholar 

  31. Krinsky, N. I., Singlet excited oxygen as a mediator of the anti-bacterial action of leukocytes. Science186 (1974) 363–365.

    Google Scholar 

  32. Lehrer, R. I., Ladra, K. M., and Hake, R. B., Nonoxidative fungicidal mechanisms of mammalian granulocytes: Demonstration of components with candidacidal activity in human, rabbit, and guinea pig leukocytes. Infect. Immun.11 (1975) 1226–1234.

    Google Scholar 

  33. Masson, P. L., Heremans, J. F., and Schonne, E., Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J. exp. Med.130 (1969) 643–658.

    Google Scholar 

  34. McCord, J. M., Keele, B. B., and Fridovich, I., An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase. Proc. natl Acad. Sci. USA68 (1971) 1024–1027.

    Google Scholar 

  35. Rabani, J., and Nielson, S. O., Absorption spectrum and decay kinetics of O2- and HO2 in aqueous solutions by pulse radiolysis. J. phys. Chem.73 (1969) 3736–3744.

    Google Scholar 

  36. Root, R. K., and Metcalf, J. A., H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells. J. clin. Invest.60 (1977) 1266–1279.

    Google Scholar 

  37. Rossi, F., and Zatti, M., Biochemical aspects of phagocytosis in polymorphonuclear leukocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia20 (1964) 21–23.

    Google Scholar 

  38. Sbarra, A. J., and Karnovsky, M. L., The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. biol. Chem.234 (1959) 1355–1362.

    Google Scholar 

  39. Schiffmann, E., Leukocyte chemotaxis. A. Rev. Physiol.44 (1982). 553–568.

    Google Scholar 

  40. Segal, A. W., Cross, A. R., Garcia, R. C., Borregaard, N., Valerius, N. H., Soothill, J. F., and Jones, O. T. G., The respiratory burst of phagocytes. N. Engl. J. Med.308 (1983) 245–251.

    Google Scholar 

  41. Segal, A. W., Jones, O. T. G., The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils. Biochem. J.182 (1979) 181–188.

    Google Scholar 

  42. Shaw, J. O., Pinckard, R. N., Ferrigni, K. S., McManus, L. M., and Hanahan, DF. J., Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor). J. Immun.127 (1981) 1250–1255.

    Google Scholar 

  43. Skarnes, R. C., and Watson, D. W., Anti-microbial factors or normal tissues and fluids. Bact. Rev.21 (1957) 273–294.

    Google Scholar 

  44. Sloan, E. P., Crawford, D. R., and Schneider, D. L., Isolation of plasma membrane from human neutrophils and determination of cytochrome b and quinone content. J. exp. Med.153 (1981) 1316–1328.

    Google Scholar 

  45. Stähelin, H., Karnovsky, M. L., Farnham, A. E., and Suter, E., Studies on the interaction between phagocytes and tubercle bacilli. III. Some metabolic effects in guinea pigs associated with infection with tubercle bacilli. J. exp. Med.105 (1957) 265–277.

    Google Scholar 

  46. Tauber, A. I., and Babior, B. M., Evidence for hydroxyl radical production by human neutrophils. J. clin. Invest.60 (1977) 374–379.

    Google Scholar 

  47. Weiss, J., Elsbach, P., Olsson, I., and Odeberg, H., Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J. biol. Chem.253 (1978) 2664–2672.

    Google Scholar 

  48. Zeya, H. I., and Spitznagel, J. K., Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Anti-microbial specificity and biochemical heterogeneity. J. exp. Med.127 (1968) 927–941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baggiolini, M. Phagocytes use oxygen to kill bacteria. Experientia 40, 906–909 (1984). https://doi.org/10.1007/BF01946438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01946438

Key words

Navigation