Experientia

, Volume 42, Issue 11–12, pp 1267–1269 | Cite as

Photochemical activation of chloroethenes leading to destruction of photosynthetic pigments

  • H. Frank
  • W. Frank
Short Communications

Summary

All major photosynthetic pigments in spruce needles (Picea abies) are rapidly destroyed when the latter are UV-irradiated in the presence of tri-or tetrachloroethene at concentrations about 10-fold higher than those present in the lower atmosphere of industrialized countries. Uptake of chlorocarbons by spruce needles is fast, and the partition coefficients between the lipophilic compartments, such as the cuticle and cellular lipid membranes, and air are high. Volatile halogenated hydrocarbons are therefore suspected of being initiators of a phytotoxic phenomenon usually referred to as new forest decline. In conjunction with the fact that they seem to be preferentially deposited along the western slopes of mountain ranges receiving high precipitation, the phenomena preported here may indicate the initiation of a severe ecotoxicological manifestation by these widely used compounds.

Key words

Forest decline halogenated hydrocarbons photochemical activation photosynthetic pigments phytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Prinz, B., Krause, G. H. M., and Stratmann, H., LIS-Report 28, Landesanstalt für Immissionsschutz des Landes Nordrhein-Westfalen, Essen 1982.Google Scholar
  2. 3.
    Lichtenthaler, H. K., Naturw. Rdsch.37 (1984) 271.Google Scholar
  3. 4.
    Wild, A., Proceedings: Wirkungen von Luftverunreinigungen auf Waldbäume und Waldböden, p. 19. Jülich, West Germany 1985.Google Scholar
  4. 5.
    Lichtenthaler, H. K., and Buschmann, C., in: Advances in Photosynthesis Research, Ed. C. Sybesma, M. Nijhoff/D. W. Junk Publ., Den Haag 1984.Google Scholar
  5. 6.
    Bundesministerium für Ernährung, Landwirtschaft und Forsten, Assessment of Forest Damages, October 1984 (UMPLIS).Google Scholar
  6. 7.
    Keller, T., and Häsler, R., Oecologia64 (1984) 284.Google Scholar
  7. 8.
    Prinz, B., Forst Holzwirt38 (1983) 460.Google Scholar
  8. 9.
    Frank, H., Nachr. Chem. Tech.32 (1984) 298.Google Scholar
  9. 10.
    Singh, H. B., Salas, L. J., and Stiles, R. E., J. geophys. Res.88 (1983) 3675.Google Scholar
  10. 11.
    Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., J. geophys. Res.86 (1981) 7210.Google Scholar
  11. 12.
    Pearson, C. R.:, in: Handbook of Environmental Chemistry, vol. 3B, p. 69. Ed. O. Hutzinger: Springer, Berlin 1982.Google Scholar
  12. 13.
    Frank, H., and Frank, W., Naturwissenschaften72 (1985) 139.Google Scholar
  13. 14.
    Sato, A., and Nakajima, T., Archs environ. Hlth.34 (1979) 69.Google Scholar
  14. 15.
    Napp-Zinn, K., in: Encyclopedia of Plant Anatomy, vol. 8, part 1. Eds W. Zimmermann, P. Ozenda and H. D. Wulff. Borntraeger, Berlin 1966.Google Scholar
  15. 16.
    Hardie, D. W. R., in: Encyclopedia of Chemical Technology, vol. 5, 2nd edn, p. 183. Eds R. E. Kirk and D. F. Otmer. New York 1964.Google Scholar
  16. 17.
    Bowen, E. J., and Rohatgi, K. K., Disc. Faraday Soc.14 (1953) 146.Google Scholar
  17. 18.
    Turro, N. J., and Barlett, P. D., J. org. Chem.30 (1965) 1849.Google Scholar
  18. 19.
    Arnon, D. I., Plant Physiol.24 (1949) 1.Google Scholar
  19. 20.
    Metzner, H., Pflanzenphysiologische Versuche, p. 220. Gustav Fischer, Stuttgart/New York 1982.Google Scholar
  20. 21.
    Stransky, H., Z. Naturforsch.33c (1978) 836.Google Scholar
  21. 22.
    Elstner, E. F., and Osswald, W., Naturw. Rdsch.37 (1984) 52.Google Scholar
  22. 23.
    Neumayr, V., WaBolu-Ber.37 (1981) 24.Google Scholar
  23. 24.
    Link, B., Dürk, H., Thiel, D., and Frank, H., Biochem. J.223 (1984) 577.Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • H. Frank
    • 1
  • W. Frank
    • 1
  1. 1.Institut für ToxikologieTübingenFederal Republic of Germany

Personalised recommendations