Advertisement

Periodica Mathematica Hungarica

, Volume 21, Issue 1, pp 17–19 | Cite as

On singletonness of uniquely remotal sets

  • T. D. Narang
Article
  • 35 Downloads

Mathematics subject classification numbers, 1980/85

Primary 41A65 Secondary 46E40 

Key words and pharases

Farthest point map remotal uniquely remotal nearly compact and totally bounded set Fréchet space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.Asplund, Sets with unique farthest points,Israel J. Math. 5 (1967), 201–209.MR 36: 4319Google Scholar
  2. [2]
    J.Blatter, Weiteste Punkte und nächste Punkte,Rev. Roumaine Math. Punes Appl. 14 (1969), 615–621.MR 40: 4737Google Scholar
  3. [3]
    Á. P.Bosznay, A remark on uniquely remotal sets inC(K, X), Period. Math. Hungar. 12 (1981), 11–14.MR 82f: 46016CrossRefGoogle Scholar
  4. [4]
    Á. P.Bosznay, Counterexample to the farthest point conjecture in metric linear spaces,Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 29 (1986), 245–246.Zbl 627: 46016Google Scholar
  5. [5]
    N.Dunford and J. T.Schwartz,Linear operators, I, Interscience Publishers, New York, 1958.MR 22: 8302Google Scholar
  6. [6]
    V. L.Klee, Convexity of Chebyshev sets, Math. Ann.142 (1961), 292–304.MR 22: 12367CrossRefGoogle Scholar
  7. [7]
    T. D.Narang, A study of farthest points,Nieuw Arch. Wisk. 25 (1977), 54–79.MR 58: 6866Google Scholar
  8. [8]
    T. D.Narang, Nearly compact sets and the farthest point map,Indian J. Pure Appl. Math. 9 (1978), 116–118.MR 57: 13333Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • T. D. Narang
    • 1
  1. 1.Department of MathematicsGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations