Skip to main content
Log in

Sodium channels in cardiac Purkinje cells

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Sodium (Na+) currents are responsible for excitation and conduction in most cardiac cells, but their study has been hampered by the lack of a satisfactory method for voltage clamp. We report a new method for low resistance access to single freshly isolated canine cardiac Purkinje cells that permits good control of voltage and intracellular ionic solutions. The series resistance was usually less than 3Ω cm2, similar to that of the squid giant axon. Cardiac Na+ currents resemble those of nerve. However, Na+ current decay is multiexponential. The basis for this was further studied with cell-attached patch clamp recording of single Na+ channel properties. A prominent characteristic of the single channels was their ability to reopen after closure. There was also a long opening state that may be the basis for a small very slowly decaying Na+ current. This rare long opening state may contribute to the Na+ current during the action potential plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldrich, R. W., Corey, D. P., and Stevens, C. F., A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature306 (1983) 436–441.

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong, C. M., and Bezanilla, F., Charge movement associated with the opening and closing of the activation gates of the Na channels. J. gen. Physiol.,63 (1974) 533–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker, P. F., Hodgkin, A. L., and Shaw, T. I., Replacement of the axoplasm of giant nerve fibres with artificial solutions. J. Physiol., Lond.164 (1962) 330–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bean, B. P., Cohen, C. J., and Tsien, R. W., Block of cardiac sodium channels by tetrodotoxin and lidocaine: Sodium currents and Vmax experiments, in: Normal and Abnormal Conduction in the Heart: Biophysics, Physiology, Pharmacology, and Ultrastructure, pp. 189–209. Eds A. Paes de Carvalho, B. F. Hoffman and M. Lieberman. Future, New York 1982.

    Google Scholar 

  5. Beeler, G. W. Jr, and Reuter, H., Voltage clamp experiments on ventricular myocardial fibres. J. Physiol., Lond.207 (1970) 165–190.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beeler, G. W. Jr, and Reuter, H., Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol., Lond.268 (1977) 177–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bodewei, R., Hering, S., Lemke, B., Rosenshtraukh, L. V., Undrovinas, A. I., and Wollenberger, A., Characterization of the fast sodium current in isolated rat myocardial cells: simulation of the clamped membrane potential. J. Physiol., Lond.325 (1982) 301–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, A. M., Lee, K. S., and Powell, T., Sodium currents in single rat heart muscle cells. J. Physiol., Lond.318 (1981) 479–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bustamante, J. O., and McDonald, T. F., Sodium currents in segments of human heart cells. Science220 (1983) 320–321.

    Article  CAS  PubMed  Google Scholar 

  10. Cachelin, A. B., de Peyer J. E., Kokubun, S., and Reuter, H., Sodium channels in cultured cardiac cells. J. Physiol., Lond.340 (1983) 389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carmeliet, E., Slow inactivation of the sodium current in rabbit cardiac Purkinje fibres. Pflügers Arch.408 (1987) 18–26.

    Article  CAS  PubMed  Google Scholar 

  12. Chiu, S. Y., Inactivation of sodium channels: second order kinetics in myelinated nerve. J. Physiol., Lond.273 (1977) 573–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colatsky, T. J., and Tsien, R. W., Sodium channels in rabbit cardiac Purkinje fibres. Nature278 (1979) 265–268.

    Article  CAS  PubMed  Google Scholar 

  14. Corabœuf, E., and Weidmann, S., Potentiel de repos et potentiels d'action du muscle cardiaque, mesures à l'aide d'electrodes intracellulaires. C. r. Soc. Biol., Paris143 (1949) 1329–1331.

    Google Scholar 

  15. Deck, K. A., Kern, R., and Trautwein, W., Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch.280 (1964) 50–62.

    Article  CAS  Google Scholar 

  16. Draper, M. H., and Weidmann, S., Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol., Lond.115 (1951) 74–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dudel, J., and Rudel, R., Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibers. Pflügers Arch.315 (1970) 136–158.

    Article  CAS  PubMed  Google Scholar 

  18. Ebihara, L., and Johnson, E. A., Fast sodium current in cardiac muscle. A quantitative description. Biophys. J.32 (1980) 779–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frankenhaeuser, B., Inactivation of the sodium-carrying mechanism in myelinated nerve fibres ofXenopus laevis. J. Physiol., Lond.169 (1963) 445–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grant, A. O., Starmer, C. F., and Strauss, H. C., Unitary sodium channels in isolated cardiac myocytes of rabbit. Cir. Res.53 (1983) 823–829.

    Article  CAS  Google Scholar 

  21. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigowrth, F. J., Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch.391 (1981) 85–100.

    Article  CAS  PubMed  Google Scholar 

  22. Hecht, H. H., Hutter, O. F., and Lywood, D. W., Voltage-current relation of short Purkinje fibres in sodium dificient solution. J. Physiol. Lond.170 (1964) 5P.

    Google Scholar 

  23. Hodgkin, A. L., Huxley, A. F., and Katz, B., Measurement of current-voltage relations in the membrane of the giant axon ofLoligo. J. Physiol. Lond.116 (1952) 424–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kostyuk, P. G., Intracellular perfusion of nerve cells and its effect on membrane currents. Physiol. Rev.64 (1984) 435–454.

    Article  CAS  PubMed  Google Scholar 

  25. Kunze, D. L., Lacerda, A. E., Wilson, D. L., and Brown, A. M., Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels. J. gen. Physiol.86 (1985) 691–719.

    Article  CAS  PubMed  Google Scholar 

  26. Lombet, A., and Lazdunski, M., Characterization, solubilization, affinity labeling and purification of the cardiac Na+ channel usingTityus toxin. FEBS144 (1984) 651–660.

    Google Scholar 

  27. Makielski, J. C., Sheets, M. F., Hanck, D. A., January, C. T., and Fozzard, H. A., Sodium current in voltage clamped internally perfused cardiac Purkinje cells. Biophys. J.52 (1987) 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McAllister, R. E., Noble, D., and Tsien, R. W., Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol., Lond.251 (1975) 1–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noda, M., Shimizu, S., Tanabe, T., Takai, T., and Kayamo, T., Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature312 (1984) 5990–5993.

    Article  Google Scholar 

  30. Oxford, G. S., Some kinetic and steady-state properties of sodium channels after removal of inactivation. J. gen. Physiol.77 (1981) 1–22.

    Article  CAS  PubMed  Google Scholar 

  31. Patlak, J. B., and Horn, R., Effect of n-bromoacetamide on single sodium channel currents in excised membrane patches. J. gen. Physiol.79 (1982) 333–351.

    Article  CAS  PubMed  Google Scholar 

  32. Patlak, J. B., and Ortiz, M., Slow currents through, single sodium channels of the adult rat heart. J. gen. Physiol.86 (1985) 89–104.

    Article  CAS  PubMed  Google Scholar 

  33. Robinson, R. A., and Stokes, R. H., Electrolyte Solutions, pp. 231–232. Butterworth Co., London 1954.

    Google Scholar 

  34. Sachs, F., Neil, J., and Barkakati, N., The automated analysis of data from single ionic channels. Pflügers Arch.395 (1982) 331–340.

    Article  CAS  PubMed  Google Scholar 

  35. Scanley, B. E., and Fozzard, H. A., Low conductance sodium channels in canine cardiac Purkinje cells. Biophys. J.52 (1987) 489–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheets, M. F., January, C. T., and Fozzard, H. A. Isolation and characterization of single canine Purkinje cells Circ. Res.53 (1983) 544–548.

    Article  CAS  PubMed  Google Scholar 

  37. Vandenberg C. A., and Horn, R., Inactivation viewed through single sodium channels. J. gen. Physiol.84 (1984) 535–564.

    Article  CAS  PubMed  Google Scholar 

  38. Walton, M. K., and Fozzard, H. A., The relation of Vmax to INa, GNa, and h in a model of the cardiac Purkinje fiber. Biophys. J.25 (1979) 407–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weidmann, S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol., Lond.127 (1955) 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fozzard, H.A., Hanck, D.A., Makielski, J.C. et al. Sodium channels in cardiac Purkinje cells. Experientia 43, 1162–1168 (1987). https://doi.org/10.1007/BF01945516

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01945516

Key words

Navigation