, Volume 43, Issue 11–12, pp 1162–1168 | Cite as

Sodium channels in cardiac Purkinje cells

  • H. A. Fozzard
  • D. A. Hanck
  • J. C. Makielski
  • B. E. Scanley
  • M. F. Sheets


Sodium (Na+) currents are responsible for excitation and conduction in most cardiac cells, but their study has been hampered by the lack of a satisfactory method for voltage clamp. We report a new method for low resistance access to single freshly isolated canine cardiac Purkinje cells that permits good control of voltage and intracellular ionic solutions. The series resistance was usually less than 3Ω cm2, similar to that of the squid giant axon. Cardiac Na+ currents resemble those of nerve. However, Na+ current decay is multiexponential. The basis for this was further studied with cell-attached patch clamp recording of single Na+ channel properties. A prominent characteristic of the single channels was their ability to reopen after closure. There was also a long opening state that may be the basis for a small very slowly decaying Na+ current. This rare long opening state may contribute to the Na+ current during the action potential plateau.

Key words

Cardiac Purkinje cells Na+ channels voltage clamp single channel recording 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldrich, R. W., Corey, D. P., and Stevens, C. F., A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature306 (1983) 436–441.CrossRefPubMedGoogle Scholar
  2. 2.
    Armstrong, C. M., and Bezanilla, F., Charge movement associated with the opening and closing of the activation gates of the Na channels. J. gen. Physiol.,63 (1974) 533–552.PubMedGoogle Scholar
  3. 3.
    Baker, P. F., Hodgkin, A. L., and Shaw, T. I., Replacement of the axoplasm of giant nerve fibres with artificial solutions. J. Physiol., Lond.164 (1962) 330–337.Google Scholar
  4. 4.
    Bean, B. P., Cohen, C. J., and Tsien, R. W., Block of cardiac sodium channels by tetrodotoxin and lidocaine: Sodium currents and Vmax experiments, in: Normal and Abnormal Conduction in the Heart: Biophysics, Physiology, Pharmacology, and Ultrastructure, pp. 189–209. Eds A. Paes de Carvalho, B. F. Hoffman and M. Lieberman. Future, New York 1982.Google Scholar
  5. 5.
    Beeler, G. W. Jr, and Reuter, H., Voltage clamp experiments on ventricular myocardial fibres. J. Physiol., Lond.207 (1970) 165–190.Google Scholar
  6. 6.
    Beeler, G. W. Jr, and Reuter, H., Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol., Lond.268 (1977) 177–210.Google Scholar
  7. 7.
    Bodewei, R., Hering, S., Lemke, B., Rosenshtraukh, L. V., Undrovinas, A. I., and Wollenberger, A., Characterization of the fast sodium current in isolated rat myocardial cells: simulation of the clamped membrane potential. J. Physiol., Lond.325 (1982) 301–315.Google Scholar
  8. 8.
    Brown, A. M., Lee, K. S., and Powell, T., Sodium currents in single rat heart muscle cells. J. Physiol., Lond.318 (1981) 479–500.Google Scholar
  9. 9.
    Bustamante, J. O., and McDonald, T. F., Sodium currents in segments of human heart cells. Science220 (1983) 320–321.PubMedGoogle Scholar
  10. 10.
    Cachelin, A. B., de Peyer J. E., Kokubun, S., and Reuter, H., Sodium channels in cultured cardiac cells. J. Physiol., Lond.340 (1983) 389–402.Google Scholar
  11. 11.
    Carmeliet, E., Slow inactivation of the sodium current in rabbit cardiac Purkinje fibres. Pflügers Arch.408 (1987) 18–26.CrossRefGoogle Scholar
  12. 12.
    Chiu, S. Y., Inactivation of sodium channels: second order kinetics in myelinated nerve. J. Physiol., Lond.273 (1977) 573–596.Google Scholar
  13. 13.
    Colatsky, T. J., and Tsien, R. W., Sodium channels in rabbit cardiac Purkinje fibres. Nature278 (1979) 265–268.PubMedGoogle Scholar
  14. 14.
    Corabœuf, E., and Weidmann, S., Potentiel de repos et potentiels d'action du muscle cardiaque, mesures à l'aide d'electrodes intracellulaires. C. r. Soc. Biol., Paris143 (1949) 1329–1331.Google Scholar
  15. 15.
    Deck, K. A., Kern, R., and Trautwein, W., Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch.280 (1964) 50–62.CrossRefGoogle Scholar
  16. 16.
    Draper, M. H., and Weidmann, S., Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol., Lond.115 (1951) 74–94.Google Scholar
  17. 17.
    Dudel, J., and Rudel, R., Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibers. Pflügers Arch.315 (1970) 136–158.CrossRefGoogle Scholar
  18. 18.
    Ebihara, L., and Johnson, E. A., Fast sodium current in cardiac muscle. A quantitative description. Biophys. J.32 (1980) 779–790.PubMedGoogle Scholar
  19. 19.
    Frankenhaeuser, B., Inactivation of the sodium-carrying mechanism in myelinated nerve fibres ofXenopus laevis. J. Physiol., Lond.169 (1963) 445–451.Google Scholar
  20. 20.
    Grant, A. O., Starmer, C. F., and Strauss, H. C., Unitary sodium channels in isolated cardiac myocytes of rabbit. Cir. Res.53 (1983) 823–829.Google Scholar
  21. 21.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigowrth, F. J., Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch.391 (1981) 85–100.CrossRefGoogle Scholar
  22. 22.
    Hecht, H. H., Hutter, O. F., and Lywood, D. W., Voltage-current relation of short Purkinje fibres in sodium dificient solution. J. Physiol. Lond.170 (1964) 5P.Google Scholar
  23. 23.
    Hodgkin, A. L., Huxley, A. F., and Katz, B., Measurement of current-voltage relations in the membrane of the giant axon ofLoligo. J. Physiol. Lond.116 (1952) 424–448.PubMedGoogle Scholar
  24. 24.
    Kostyuk, P. G., Intracellular perfusion of nerve cells and its effect on membrane currents. Physiol. Rev.64 (1984) 435–454.PubMedGoogle Scholar
  25. 25.
    Kunze, D. L., Lacerda, A. E., Wilson, D. L., and Brown, A. M., Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels. J. gen. Physiol.86 (1985) 691–719.PubMedGoogle Scholar
  26. 26.
    Lombet, A., and Lazdunski, M., Characterization, solubilization, affinity labeling and purification of the cardiac Na+ channel usingTityus toxin. FEBS144 (1984) 651–660.Google Scholar
  27. 27.
    Makielski, J. C., Sheets, M. F., Hanck, D. A., January, C. T., and Fozzard, H. A., Sodium current in voltage clamped internally perfused cardiac Purkinje cells. Biophys. J.52 (1987) 1–11.PubMedGoogle Scholar
  28. 28.
    McAllister, R. E., Noble, D., and Tsien, R. W., Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol., Lond.251 (1975) 1–59.Google Scholar
  29. 29.
    Noda, M., Shimizu, S., Tanabe, T., Takai, T., and Kayamo, T., Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature312 (1984) 5990–5993.Google Scholar
  30. 30.
    Oxford, G. S., Some kinetic and steady-state properties of sodium channels after removal of inactivation. J. gen. Physiol.77 (1981) 1–22.PubMedGoogle Scholar
  31. 31.
    Patlak, J. B., and Horn, R., Effect of n-bromoacetamide on single sodium channel currents in excised membrane patches. J. gen. Physiol.79 (1982) 333–351.PubMedGoogle Scholar
  32. 32.
    Patlak, J. B., and Ortiz, M., Slow currents through, single sodium channels of the adult rat heart. J. gen. Physiol.86 (1985) 89–104.PubMedGoogle Scholar
  33. 33.
    Robinson, R. A., and Stokes, R. H., Electrolyte Solutions, pp. 231–232. Butterworth Co., London 1954.Google Scholar
  34. 34.
    Sachs, F., Neil, J., and Barkakati, N., The automated analysis of data from single ionic channels. Pflügers Arch.395 (1982) 331–340.CrossRefGoogle Scholar
  35. 34a.
    Scanley, B. E., and Fozzard, H. A., Low conductance sodium channels in canine cardiac Purkinje cells. Biophys. J.52 (1987) 489–495.PubMedGoogle Scholar
  36. 35.
    Sheets, M. F., January, C. T., and Fozzard, H. A. Isolation and characterization of single canine Purkinje cells Circ. Res.53 (1983) 544–548.PubMedGoogle Scholar
  37. 36.
    Vandenberg C. A., and Horn, R., Inactivation viewed through single sodium channels. J. gen. Physiol.84 (1984) 535–564.PubMedGoogle Scholar
  38. 37.
    Walton, M. K., and Fozzard, H. A., The relation of Vmax to INa, GNa, and h in a model of the cardiac Purkinje fiber. Biophys. J.25 (1979) 407–420.PubMedGoogle Scholar
  39. 38.
    Weidmann, S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol., Lond.127 (1955) 213–224.Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • H. A. Fozzard
    • 1
  • D. A. Hanck
    • 1
  • J. C. Makielski
    • 1
  • B. E. Scanley
    • 1
  • M. F. Sheets
    • 1
  1. 1.Cardiac Electrophysiology Labs, Departments of Medicine and the Pharmacological & Physiological SciencesThe University of ChicagoChicagoUSA

Personalised recommendations