, Volume 43, Issue 11–12, pp 1135–1140 | Cite as

Contribution of the Na+/K+-pump to the membrane potential

  • M. Vassalle


The inward movement of sodium ions and the outward movement of potassium ions are passive and the reverse movements against the electrochemical gradients require the activity of a metabolism-driven Na+/K+-pump. The activity of the Na+/K+-pump influences the membrane potential directly and indirectly. Thus, the maintenance of a normal electrical function requires that the Na+/K+-pump maintain normal ionic concentrations within the cell. The activity of the Na+/K+-pump also influences the membrane potential directly by generating an outward sodium current that is larger when the Na+/K+-pump activity is greater. The activity of the Na+/K+-pump is regulated by several factors including the intracellular sodium concentration and the neuromediators norepinephrine and acetylcholine. The inhibition of the Na+/K+-pump can lead indirectly to the development of inward currents that may cause repetitive activity. Therefore, the Na+/K+-pump modifies the membrane potential in different ways both under normal and abnormal conditions and influences in an essential way many cardiac functions, including automaticity, conduction and contraction.

Key words

Active transport of ions cardiac tissues electroneutral and electrogenic Na+/K+ pump control of Na+/K+-pump normal and abnormal electrical events 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abete, P., and Vassalle, M., Strophanthidin inotropy, overdrive and intracellular sodium activity. Proc. int. Union physiol. Sci.26 (1986) 351.Google Scholar
  2. 2.
    Akasu, T., Ohta, Y., and Koketsu, K., The effect of adrenaline on the electrogenic N+ pump in cardiac muscle cells. Experientia34 (1978) 488–490.PubMedGoogle Scholar
  3. 2a.
    Apfel, H., and Vassalle, M., Fedn Proc.46 (1987) 366.Google Scholar
  4. 3.
    Baker, P. F., Blaustein, M. P., Keynes, R. D., Manil, J., Shaw, T. I., and Steinhardt, R. A., The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J. Physiol. London200 (1969) 459–496.PubMedGoogle Scholar
  5. 4.
    Bernabei, R., and Vassalle, M., The inotropic effects of strophanthidin in Purkinje fibers and the sodium pump. Circulation69 (1984) 618–631.PubMedGoogle Scholar
  6. 5.
    Bhattacharyya, M., and Vassalle, M., Metabolism-dependence of overdrive-induced hyperpolarization. Archs int. Pharmacodyn. Thér.246 (1980) 28–37.Google Scholar
  7. 6.
    Brinley, F. J. Jr, and Mullins, L. J., Sodium fluxes in internally dialyzed squid axons. J. gen. Physiol.52 (1968) 181–211.PubMedGoogle Scholar
  8. 7.
    Borasio, P. G., and Vassalle, M., Dibutyryl cyclic AMP and potassium transport in cardiac Purkinje fibers. Am. J. Physiol.226 (1974) 1232–1237.PubMedGoogle Scholar
  9. 8.
    Carpentier, R., and Vassalle, M., Enchancement and inhibition of a frequency-activated electrogenic sodium pump in cardiac Purkinje fibers. pp. 81–98. Eds F. F. Kao, K. Koizumi and M. Vassalle. Aulo Gaggi, Bologna 1971.Google Scholar
  10. 9.
    Carpentier, R., and Vassalle, M., Actions and interactions of norepinephrine and acetylcholine on sinus node potassium movements. Archs Sci. biol.61 (1977) 75–88.Google Scholar
  11. 10.
    Chapman, R. A., Control of cardiac contractility at the cellular level. Am. J. Physiol.245 (1983) H535-H552.PubMedGoogle Scholar
  12. 11.
    Cohen, I., Falk, R., and Kline, R., Membrane currents following activity in canine cardiac Purkinje fibers. Biophys. J.33 (1981) 281–288.PubMedGoogle Scholar
  13. 12.
    Cohen, C. J., Fozzard, H. A., and Sheu, S.-S., Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ. Res.50 (1982) 651–662.PubMedGoogle Scholar
  14. 13.
    Deitmer, J. W., and Ellis, D., Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J. Physiol.304 (1980) 371–488.Google Scholar
  15. 14.
    Délèze, J., Possible reasons for the drop of resting potential of mammalian heart preparations during hypothermia. Circ. Res.8 (1960) 553–557.PubMedGoogle Scholar
  16. 15.
    Diacono, J., Suggestive evidence for the activation of an electrogenic sodium pump in stimulated rat atria: apparent discrepancy between the pump inhibition and the positive inotropic response induced by ouabain. J. molec. cell. Cardiol.11 (1979) 5–30.CrossRefGoogle Scholar
  17. 16.
    Di Gennaro, M., and Vassalle, M., Relationship between caffeine effects and calcium in canine cardiac Purkinje fibers. Am. J. Physiol.28 (1985) H520-H533.Google Scholar
  18. 17.
    Draper, M. H., and Weidmann, S. Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. London115 (1951) 74–94.Google Scholar
  19. 18.
    Eisner, D. A., and Lederer, W. J., The role of the sodium pump in the effects of potassium-depleted solutions on mammalian cardiac muscle. J. Physiol. London294 (1979) 279–301.PubMedGoogle Scholar
  20. 19.
    Eisner, D. A., and Lederer, W. J., Characterization of the electrogenic sodium pump in cardiac Purkinje fibres. J. Physiol. London303 (1980) 441–474.PubMedGoogle Scholar
  21. 20.
    Eisner, D. A., and Lederer, W. J., The relationship between sodium pump activity and twitch tension in cardiac Purkinje fibres. J. Physiol. London303 (1980) 475–494.PubMedGoogle Scholar
  22. 21.
    Gadsby, D. C., Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibers. Proc. natn. Acad. Sci. USA77 (1980) 4035–4039.Google Scholar
  23. 22.
    Gadsby, D. C., and Cranefield, P. F., Direct measurement of changes in sodium pump current in canine cardiac Purkinje fibers. Proc. natn. Acad. Sci. USA76 (1979) 1783–1787.Google Scholar
  24. 23.
    Gadsby, D. C., and Cranefield, P. F., Electrogenic sodium extrusion in cardiac Purkinje fibers. J. gen. Physiol.73 (1979) 819–837.CrossRefPubMedGoogle Scholar
  25. 24.
    Glitsch, H. G., Grabowski, W., and Thielen, J., Activation of the electrogenic sodium pump in guinea-pig atria by external potassium ions. J. Physiol. London276 (1978) 515–524.PubMedGoogle Scholar
  26. 25.
    Glitsch, H. G., and Pusch, H. Correlation between changes in membrane potential and intracellular sodium activity during K activated response in sheep Purkinje fibres. Pflügers Arch.384 (1980) 189–191.CrossRefGoogle Scholar
  27. 26.
    Hiraoka, M., and Hecht, H. H., Recovery from hypothermia in cardiac Purkinje fibers: considerations for an electrogenic mechanism. Pflügers Arch.339 (1973) 25–36.CrossRefGoogle Scholar
  28. 27.
    Iacono, G., and Vassalle, M., Acetylcholine increases intracellular sodium activity in sheep Purkinje fibers. (Abstract) Circulation74 (1986) II-256.Google Scholar
  29. 28.
    Isenberg, G., Cardiac Purkinje fibres. [Ca2+]i controls steady state potassium conductance. Pflügers Arch.371 (1977) 71–76.CrossRefGoogle Scholar
  30. 29.
    Isenberg, G., and Trautwein, W., The effect of dihydro-ouabain and lithium-ions on the outward current in cardiac Purkinje fibers. Evidence for electrogenicity of active transport. Pflügers Arch.350 (1974) 41–54.CrossRefGoogle Scholar
  31. 30.
    Kass, R. S., Lederer, W. J., Tsien, R. W., and Weingart, R., Role of calcium ions in transient inward currents and after contractions induced by strophanthidin in cardiac Purkinje fibres. J. Physiol. London281 (1978) 187–208.PubMedGoogle Scholar
  32. 31.
    Kass, R. S., Tsien, R. W., and Weingart, R., Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J. Physiol. London281 (1978) 209–226.PubMedGoogle Scholar
  33. 32.
    Kunze, D. L., Rate-dependent changes in extracellular potassium in the rabbit atrium. Circ. Res.41 (1977) 122–127.PubMedGoogle Scholar
  34. 33.
    Lado, M. G., Sheu, S.-S., and Fozzard, H. A., Changes in intracellular Ca2+ activity with stimulation in sheep cardiac Purkinje strands. Am. J. Physiol.243 (1982) H133-H137.PubMedGoogle Scholar
  35. 34.
    Lee, C. O., Abete, P., Pecker, M., Sonn, J. K., and Vassalle, M., Strophanthidin inotropy: Role of intracellular sodium ion activity and sodium-calcium exchange. J. molec. cell. Cardiol.17 (1985) 1043–1053.Google Scholar
  36. 35.
    Lee, C. O., and Dagostino, M., Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers. Biophys. J.40 (1982) 185–198.PubMedGoogle Scholar
  37. 36.
    Lee, C. O., and Vassalle, M., Modulation of intracellular Na+ activity and cardiac force by norepinephrine and Ca2+. Am. J. Physiol.244 (1983) C110-C114.PubMedGoogle Scholar
  38. 37.
    Lu, H.-H., Lange, G., and Brooks, C. McC., Factors controlling pacemaker action in cells of the sinoatrial node. Circ. Res.17 (1965) 460–471.PubMedGoogle Scholar
  39. 38.
    Mullins, L. J., The generation of electric currents in cardiac fibers by Na/Ca exchange. Am. J. Physiol.236 (1979) C103-C110.PubMedGoogle Scholar
  40. 39.
    Musso, E., and Vassalle, M., The role of calcium in overdrive suppression of canine cardiac Purkinje fibers. Circ. Res.51 (1982) 167–180.PubMedGoogle Scholar
  41. 40.
    Noma, A., and Irisawa, H., Electrogenic sodium pump in rabbit sinoatrial node cell. Pflügers Arch.351 (1974) 177–182.CrossRefGoogle Scholar
  42. 41.
    Noma, A., and Irisawa, H., Contribution of an electrogenic sodium pump to the membrane potential in rabbit sinoatrial node cells. Pflügers Arch.358 (1975) 289–301.CrossRefGoogle Scholar
  43. 42.
    Page, E., and Storm, S. R., Cat heart muscle in vitro. VIII. Active transport of sodium in papillary muscles. J. gen. Physiol.48 (1965) 957–972.PubMedGoogle Scholar
  44. 43.
    Polimeni, P. I., and Vassalle, M., On the mechanism of ouabain toxicity in Purkinje and ventricular muscle fibers at rest and during activity. Am. J. Cardiol.27 (1971) 622–629.CrossRefPubMedGoogle Scholar
  45. 44.
    Posner, P., Farrer, E., and Lambert, C. R., Inhibitory effects of catecholamines in canine cardiac Purkinje fibers. Am. J. Physiol.231 (1976) 1415–1420.PubMedGoogle Scholar
  46. 45.
    Posner, P., and Vassalle, M., The inhibitory action of norepinephrine on potassium uptake in cardiac Purkinje fibers. T.I.I. J. Life Sci.1 (1971) 67–78.Google Scholar
  47. 46.
    Schatzmann, H.-J., Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv. physiol. pharmac. Acta11 (1953) 346–354.Google Scholar
  48. 47.
    Sheu, S.S., and Fozzard, H. A., Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. gen. Physiol.80 (1982) 325–351.PubMedGoogle Scholar
  49. 48.
    Tamai, T., and Kagiyama, S., Studies of cat heart muscle during recovery after prolonged hypothermia. Hyperpolarization of cell membranes and its dependence of the sodium pump with electrogenic characteristics. Circ. Res.22 (1968) 423–433.PubMedGoogle Scholar
  50. 49.
    Thomas, R., Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev.52 (1972) 563–594.PubMedGoogle Scholar
  51. 50.
    Velenzuela, F., and Vassalle, M., Overdrive excitation and cellular calcium load in canine cardiac Purkinje fibers. J. Electrocardiol.18 (1985) 21–34.PubMedGoogle Scholar
  52. 51.
    Vassalle, M., Cardiac pacemaker potentials at different extra- and intracellular K concentrations. Am. J. Physiol.208 (1965) 770–775.PubMedGoogle Scholar
  53. 52.
    Vassalle, M., Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ. Res.27 (1970) 361–377.PubMedGoogle Scholar
  54. 53.
    Vassalle, M., The relationship among cardiac pacemakers. Circ. Res.41 (1977) 269–277.PubMedGoogle Scholar
  55. 54.
    Vassalle, M., The role of the electrogenic sodium pump in controlling excitability in nerve and cardiac fibers, in: Current Topics in Membranes and Transport. 16, Electrogenic Ion Pumps, pp. 467–483. Ed. C. L. Slayman, Academic Press, New York 1982.Google Scholar
  56. 55.
    Vassalle, M., Overdrive excitation: the onset of spontaneous activity following a fast drive, in: Cardiac Electrophysiology and Arrhythmias, pp. 97–107. Eds. D. P. Zipes and J. Jalife. Grune and Stratton, New York 1985.Google Scholar
  57. 56.
    Vassalle, M., and Barnabei, O., Norepinephrine and potassium fluxes in cardiac Purkinje fibers. Pflügers Arch322 (1971) 287–303.CrossRefGoogle Scholar
  58. 57.
    Vassalle, M., and Carpentier, R., Hyperpolarizing and depolarizing effects of norepinephrine in cardiac Purkinje fibers, in: Research in Physiology, pp. 373–388. Eds. F. F. Kao, K. Koizumi and M. Vassalle. Aulo Gaggi, Bologna 1982.Google Scholar
  59. 58.
    Vassalle, M., Caress, D. L., Slovin, A. J., and Stuckey, J. H., On the cause of ventricular asystole during vagal stimulation. Circ. Res.20 (1967) 228–241.PubMedGoogle Scholar
  60. 59.
    Vassalle, M., and Di Gennaro, M., Caffeine actions on currents induced by calcium-overload in Purkinje fibers. Eur. J. Pharmac.106 (1984) 121–131.CrossRefGoogle Scholar
  61. 60.
    Vassalle, M., Greenspan, K., and Hoffman, B. F., An analysis of arrhythmias induced by ouabain in intact dogs. Cir. Res.13 (1963) 132–148.Google Scholar
  62. 61.
    Vassalle, M., and Musso, E., On the mechanism underlying digitalis toxicity in cardiac Purkinje fibers, in: Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 9 The Sarcolemma, pp. 355–376. Eds. P.-E. Roy and N. S. Dhalla. University Press, Baltimore 1976.Google Scholar
  63. 62.
    Vassalle, M., Vagnini, F. J., Gourin, A., and Stuckey, J. H., Suppression and initiation of idioventricular automaticity during vagal stimulation. Am. J. Physiol.212 (1967) 1–7.PubMedGoogle Scholar
  64. 63.
    Weidmann, S., The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. London127 (1955) 213–224.PubMedGoogle Scholar
  65. 64.
    Weidmann, S., Effect of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. London129 (1955) 568–582.PubMedGoogle Scholar
  66. 65.
    Weidmann, S., Elektrophysiologie der Herzmuskelfaser. Huber, Bern 1956.Google Scholar
  67. 66.
    Weingart, R., The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle. J. Physiol. London264 (1977) 341–365.PubMedGoogle Scholar
  68. 67.
    Wiggins, J. R., and Cranefield, P. F., Effect of membrane potential and electrical activity of adding sodium to sodium-depleted cardiac Purkinje fibers. J. gen. Physiol.64 (1974) 473–493.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • M. Vassalle
    • 1
  1. 1.Department of PhysiologyState University of New York, Health Science Center at BrooklynBrooklynUSA

Personalised recommendations