Advertisement

Experientia

, Volume 38, Issue 2, pp 151–156 | Cite as

Ethanol from cellulose

  • Jürgen Wiegel
Conversion of Biomass to Fuel and Chemical Raw Material

Summary

An excess of organic waste, containing up to 60% cellulose and hemicellulose is produced worldwide. The conversion of this cellulosic material to ethanol is discussed: The two-step process consisting of a hydrolysis step to glucose and the subsequent fermentation by yeasts; and the one-step process, a fermentation of the cellulose by the anaerobic thermophileClostridium thermocellum, or by a thermophilic, anaerobic, defined mixed culture. The use of the latter seems to be very feasible., To achieve an economic process, it is suggested to combine this approach with a thermophilic fermentation of the effluent and/or stillage obtained to produce methane.

Keywords

Glucose Cellulose Methane Hydrolysis Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Finnerty, in: Microbial Energy Conversion, p. 83. Ed. H. G. Schlegel and J. Barnea. Erich Golze KG, Göttingen 1976.Google Scholar
  2. 2.
    B. Berg, Archs Microbiol.118, 61 (1978).Google Scholar
  3. 3.
    L. A. Spano, in: Microbial Energy Conversion p. 157. Ed. H. G. Schlegel and J. Barnea. Erich Goltze KG, Göttingen 1976.Google Scholar
  4. 4.
    H. Sahm, in: Rothenburger Symposium, p. 75. Braun AG, Melsungen 1978.Google Scholar
  5. 5.
    The National Biomass Program, 3rd Annual Biomass Energy System Conference Proceedings, SERI/TP 33-285 (1979).Google Scholar
  6. 6.
    G. Halliwell, Prog. ind. Microbiol.15 1 (1979).Google Scholar
  7. 7.
    T. K. Ghose, in: Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein, p. 599. New Delhi 1977.Google Scholar
  8. 8.
    R. E. Hungate, The Rumen and its Microbes. Academic Press, New York 1967.Google Scholar
  9. 9.
    M. Linko, in: Microbiology applied to Biotechnology; Dechema Monographie No. 83, p. 209, Verlag Chemie, Weinheim/New York 1979.Google Scholar
  10. 10.
    A. E. Humphrey, A. Moreira, W. Armiger and D. Zabriskie, Biotech. Bioengng Symp.7, 45 (1977).Google Scholar
  11. 11.
    D. S. Chaha, J. E. Swan and M. Moo-Young Devs ind. Microbiol.18, 433 (1977).Google Scholar
  12. 12.
    T. C. Rexen, Animal Fd Sci. Technol.1, 73 (1976).Google Scholar
  13. 13.
    Y. W. Han and C. D. Callihan, Appl. Microbiol.27, 159 (1974).Google Scholar
  14. 14.
    G. H. Grant, Y. W. Han and A. W. Anderson, Appl. environ. Microbiol.35, 549 (1978).Google Scholar
  15. 15.
    M. R. Ladisch, C. M. Ladisch and G. T. Tsao, Science201, 743 (1978).Google Scholar
  16. 16.
    E. T. Reese and M. Mandels, Biotechnol. Bioengng22, 323 (1980).Google Scholar
  17. 17.
    R. F. Gomez, in: Proc. Colloque Cellulolyse Microbienne, p. 177, Marseille 1980.Google Scholar
  18. 18.
    I. C. Wang, I. Biocic, H.-Y. Fang and S.-D. Wang, in: Proc. 3rd Annual Biomass Energy System Conference, SERI/TP 33-285 (1979).Google Scholar
  19. 19.
    J. Wiegel, Experientia,36, 1434 (1980).Google Scholar
  20. 20.
    J. E. L. Corry, J. Bact.44, 1 (1978).Google Scholar
  21. 21.
    J. G. Zeikus, Env. Microbiol. Tech.1, 243 (1979).Google Scholar
  22. 22.
    M. Tansey, ASM-News45, 417 (1979).Google Scholar
  23. 23.
    S. L. Rosenberg, Mycologia70, 1 (1978).Google Scholar
  24. 24.
    W. D. Belamy, ASM-News45, 326 (1979).Google Scholar
  25. 25.
    J. Wiegel, in preparation.Google Scholar
  26. 26.
    C. L. Cooney, D. I. C. Wang, S. D. Wang, I. Gordon and M. Jiminez, Biotechnol. Bioengng Symp.8, 103 (1979).Google Scholar
  27. 27.
    D. V. Garcia-Martinez, A. Shinmyo, A. Madia and A. L. Demain, Eur. J. appl. Microbiol.9, 189 (1980).Google Scholar
  28. 28.
    N. D. Sjolander, J. Bact.34, 419 (1937).Google Scholar
  29. 29.
    E. J. Hsu and Z. J. Ordal, J. Bact.102, 369 (1970).Google Scholar
  30. 30.
    J. Wiegel and L. G. Ljungdahl, in: Technische Mikrobiologie, p. 117. Ed. H. Dellweg. Verlag Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie im Institut für Gärungsgewebe und Biotechnologie, Berlin 1979.Google Scholar
  31. 31.
    J. Wiegel, L. G. Ljungdahl and J. R. Rawson, J. Bact.139, 800 (1979).Google Scholar
  32. 32.
    J. Wiegel and L. G. Ljungdahl, Archs Microbiol.,128, 343 (1981).Google Scholar
  33. 33.
    L. G. Ljungdahl and J. Wiegel, USA patents 4.292.406 and 4.292.407 (1981).Google Scholar
  34. 34.
    H. Dellweg and K. Misselhorn, in: Microbiology applied to Biotechnology; Dechema Monographie No. 83, p. 35. Verlag Chemie, Weinheim/New York 1979.Google Scholar
  35. 35.
    H. H. Dietrichs, Holzforschung32, 193 (1978).Google Scholar
  36. 36.
    S. I. Aronovsky and R. A. Gortner, Indian Engng Chem.28, 1270 (1936).Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Jürgen Wiegel
    • 1
  1. 1.Institut für Mikrobiologie der Gesellschaft für Strahlen- und UmweltforschungGöttingen(Germany)

Personalised recommendations