, Volume 38, Issue 1, pp 132–134 | Cite as

Effect of azimexon (BM 12.531) on mouse granulocyte-macrophage and monocyte-macrophage progenitor cells

  • J. C. Jeng
  • K. F. McCarthy
  • M. A. Chirigos
  • J. F. Weiss


Treatment of mice with 25 mg/kg azimexon (BM 12.531) resulted in an increase in granulocyte-macrophage colony-forming cells (GM-CFC) in spleen and bone marrow after a transient depression in the cell populations. Bone marrow monocyte-macrophage colony-forming cells (MM-CFC) increased at 7 days after treatment, and splenic MM-CFC were least affected by azimexon treatment. The increase in granulocytic and monocytic colony-forming cells may play a role in the previously reported protection by azimexon against radiation and drug-induced toxicity.


Radiation Toxicity Bone Marrow Depression Cell Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    U. Bicker, Cancer Treat. Rep.62, 1987 (1978).PubMedGoogle Scholar
  2. 3.
    W.A. Stylos, M.A. Chirigos, V. Papademetriou and L. Lauer, J. Immunopharmac.2, 113 (1980).Google Scholar
  3. 4.
    U. Bicker, G. Hebold, A.E. Ziegler and W. Maus, Exp. Path.15, 49 (1978).Google Scholar
  4. 5.
    U. Bicker, A.E. Ziegler and G. Hebold, IRCS med. Sci.6, 377 (1978).Google Scholar
  5. 6.
    M.A. Chirigos, V. Papademetriou, A. Bertocci and E. Read, in: Advances in Immunopharmacology, p. 217. Ed. J. Hadden, L. Schedid, P. Mullen and F. Spreafico. Pergamon Press, Oxford 1981.Google Scholar
  6. 7.
    M. Micksche, M. Colot and U. Bicker, IRCS med. Sci.6, 434 (1978).Google Scholar
  7. 8.
    U. Bicker, K.D. Friedberg, G. Hebold and K. Mengel, Experientia35, 1361 (1979).PubMedGoogle Scholar
  8. 9.
    R. Kreienberg, D. Boerner, J. Melchert and E.M. Semmel, J. Immunopharmac., in press (1981).Google Scholar
  9. 10.
    M.J. Cline and D.W. Golde, Blood53, 157 (1979).PubMedGoogle Scholar
  10. 11.
    T.J. MacVittie and M. Porvaznik, J. Cell Physiol.97, 305 (1978).PubMedGoogle Scholar
  11. 12.
    D. Metcalf, in: Experimental Hematology Today, p. 35. Ed. S.J. Baum and G.D. Ledney. Springer-Verlag, New York 1978.Google Scholar
  12. 13.
    K.F. McCarthy and T.J. MacVittie, J. reticuloendoth. Soc.24, 263 (1978).Google Scholar
  13. 14.
    T.R. Bradley, E.R. Stanley and M.A. Sumner, Aust. J. exp. Biol. med. Sci.49, 595 (1971).PubMedGoogle Scholar
  14. 15.
    R.S. Foster, Jr, B.R. MacPherson and D.A. Browdie, Cancer Res.37, 1349 (1977).PubMedGoogle Scholar
  15. 16.
    T.J. MacVittie, in: Experimental Hematology Today, p. 3. Ed. S.J. Baum and G.D. Ledney. Springer-Verlag, New York 1979.Google Scholar
  16. 17.
    B. Fisher and M. Gebhardt, Cancer Treat. Rep.62, 1919 (1978).PubMedGoogle Scholar
  17. 18.
    N. Wolmark, M. Levine and B. Fisher, J. reticuloendoth. Soc.16, 252 (1974).Google Scholar
  18. 19.
    B. Fisher, S. Taylor, M. Levine, E. Saffer and E.R. Fisher, Cancer Res.34, 1668 (1974).PubMedGoogle Scholar
  19. 20.
    A.R. Zander, K.A. Dicke, D. Verma, S. Ginzbarg and G. Spitzer, Exp. Hemat.7, suppl. 5, 116 (1979).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • J. C. Jeng
    • 1
    • 2
  • K. F. McCarthy
    • 1
    • 2
  • M. A. Chirigos
    • 1
    • 2
  • J. F. Weiss
    • 1
    • 2
  1. 1.Biochemistry DepartmentArmed Forces Radiobiology Research InstituteBethesdaUSA
  2. 2.Laboratory of Chemical PharmacologyNational Institutes of HealthBethesdaUSA

Personalised recommendations