BIT Numerical Mathematics

, Volume 22, Issue 2, pp 233–251 | Cite as

Solution of finite systems of equations by interval iteration

  • L. B. Rall
Part II Numerical Mathematics


In actual practice, iteration methods applied to the solution of finite systems of equations yield inconclusive results as to the existence or nonexistence of solutions and the accuracy of any approximate solutions obtained. On the other hand, construction of interval extensions of ordinary iteration operators permits one to carry out interval iteration computationally, with results which can give rigorous guarantees of existence or nonexistence of solutions, and error bounds for approximate solutions. Examples are given of the solution of a nonlinear system of equations and the calculation of eigenvalues and eigenvectors of a matrix by interval iteration. Several ways to obtain lower and upper bounds for eigenvalues are given.

AMS (MOS) Subject Classifications

65G10 65H05 65H10 65H15 65F10 65F15 


Interval analysis interval iteration linear and nonlinear systems of equations upper and lower bounds for solutions eigenvalues and eigenvectors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Alefeld,Intervallanalytische Methoden bei nichtlinearen Gleichungen, Jahrb. überblicke Math. 1979 (1979), 63–78.Google Scholar
  2. 2.
    P. M. Anselone and L. B. Rall,The solution of characteristic value-vector problems by Newton's method, Numer. Math. 11 (1968), 38–45.Google Scholar
  3. 3.
    O. Caprani and K. Madsen,Mean value forms in interval analysis, Computing 25 (1980), 147–154.Google Scholar
  4. 4.
    A. Cuyt and P. Van der Cruyssen,Abstract Padé-approximants for the solution of a system of nonlinear equations, Rept. No. 80-17, Department of Mathematics, Univ. Antwerp, 1980.Google Scholar
  5. 5.
    R. Krawczyk,Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing 4 (1969), 187–201.Google Scholar
  6. 6.
    D. Kuba and L. B. Rall,A UNIVAC 1108 program for obtaining rigorous error estimates for approximate solutions of systems of equations, MRC Tech. Summary Rept. No. 1168, Univ. of Wisconsin-Madison, 1972.Google Scholar
  7. 7.
    U. Kulisch and W. Miranker,Computer Arithmetic in Theory and Practice, Academic Press, New York, 1981.Google Scholar
  8. 8.
    U. Kulisch and H.-W. Wippermann,PASCAL-SC: Pascal for Scientific Computation, Inst. for Appl. Math. Univ. Karlsruhe, 1980.Google Scholar
  9. 9.
    R. E. Moore,Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1966.Google Scholar
  10. 10.
    R. E. Moore,A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal. 14 (1977), 611–615.Google Scholar
  11. 11.
    R. E. Moore,Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics, 2, Soc. for Ind. Appl. Math., Philadelphia, 1979.Google Scholar
  12. 12.
    R. E. Moore,Interval methods for nonlinear systems, Computing, Suppl. 2 (1980), 113–120.Google Scholar
  13. 13.
    R. E. Moore,New results on nonlinear systems, [16], pp. 165–180 (1980).Google Scholar
  14. 14.
    R. E. Moore and S. T. Jones,Safe starting regions for iterative methods, SIAM J. Numer. Anal. 14 (1977), 1051–1065.Google Scholar
  15. 15.
    K. Nickel,Stability and convergence of monotonic algorithms, J. Math. Anal. Appl. 54 (1976), 157–172.Google Scholar
  16. 16.
    K. Nickel (Ed.),Interval Mathematics 1980, Academic Press, New York, 1980.Google Scholar
  17. 17.
    L. B. Rall,Quadratic equations in Banach spaces, Rend. Circ. Mat. Palermo (2) 10 (1961), 314–332.Google Scholar
  18. 18.
    L. B. Rall,Newton's method for the characteristic value problem Ax = λBx, J. Soc. Indust. Appl. Math. 9 (1961), 288–293, Errata 10 (1962), 228.Google Scholar
  19. 19.
    L. B. Rall,A quadratically convergent iteration method for computing zeros of operators satisfying autonomous differential equations, Math. Comp. 30 (1976), 112–114.Google Scholar
  20. 20.
    L. B. Rall,Computational Solution of Nonlinear Operator Equations, Wiley, New York, 1969. Reprinted by Krieger, Huntington, N.Y., 1979.Google Scholar
  21. 21.
    L. B. Rall,A comparison of the existence theorems of Kantorovich and Moore, SIAM J. Number. Anal. 17 (1980), 148–161.Google Scholar
  22. 22.
    L. B. Rall,Applications of software for automatic differentiation in numerical computation, Computing, Suppl. 2 (1980), 141–156.Google Scholar
  23. 23.
    L. B. Rall,An interval arithmetic package for the HP33-E, Freib. Intervall-Ber. 80/7 (1980), 21–23.Google Scholar
  24. 24.
    L. B. Rall,A theory of interval iteration, MRC Tech. Summary Rept. No. 2196, Univ. of Wisconsin-Madison, 1981.Google Scholar
  25. 25.
    J. M. Yohe,Implementing nonstandard arithmetics, SIAM Rev. 21 (1979), 34–56.Google Scholar
  26. 26.
    J. M. Yohe,Portable software for interval arithmetic, Computing, Suppl. 2 (1980), 211–229.Google Scholar

Copyright information

© BIT Foundations 1982

Authors and Affiliations

  • L. B. Rall
    • 1
  1. 1.Mathematics Research CenterUniversity of WisconsinMadisonU.S.A.

Personalised recommendations