Advertisement

Algorithmica

, Volume 16, Issue 6, pp 549–568 | Cite as

Interval routing schemes

  • M. Flammini
  • G. Gambosi
  • S. Salomone
Article

Abstract

In this paper the problem of routing messages along shortest paths in a distributed network without using complete routing tables is considered. In particular, the complexity of deriving minimum (in terms of number of intervals) interval routing schemes is analyzed under different requirements. For all the cases considered NP-hardness proofs are given, while some approximability results are provided. Moreover, relations among the different cases considered are studied.

Key words

Distributed systems Compact routing tables Interval routing NP-completeness Shortest paths representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data structures for adaptive routing.Proc. 21st ACM Symp. on Theory of Computing, 1989, pp. 479–489.Google Scholar
  2. [2]
    B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Improved routing strategies with succinct tables.Journal of Algorithms,11 (1990), 307–341.Google Scholar
  3. [3]
    B. Awerbuch and D. Peleg. Routing with polynomial communication-space tradeoff.SIAM Journal on Discrete Mathematics,5(2) (1992), 151–162.Google Scholar
  4. [4]
    E. Bakker, J. van Leeuwen, and R. B. Tan. Linear interval routing.Algorithms Review,2 (1991), 45–61.Google Scholar
  5. [5]
    N. Christofides. Worst case analysis of a new heuristic for the travelling salesman problem. Report No. 388, GSIA, Carnegie-Mellon University, Pittsburgh, PA, 1976.Google Scholar
  6. [6]
    M. Flammini, G. Gambosi, and S. Salomone. Boolean routing.Proc. 7th Internat. Workshop on Distributed Algorithms (WDAG), Lecture Notes in Computer Science, vol. 725, Springer-Verlag, 1993, pp. 219–233.Google Scholar
  7. [7]
    P. Fraigniaud and C. Gavoille. A characterization of networks supporting linear interval routing.Proc. 13th ACM Symp. on Principles of Distributed Computing, 1994, pp. 216–224.Google Scholar
  8. [8]
    G. N. Frederickson and R. Janardan. Designing networks with compact routing tables.Algorithmica,3 (1988), 171–190.Google Scholar
  9. [9]
    G. N. Frederickson and R. Janardan. Efficient message routing in planar networks.SIAM Journal on Computing,18 (1989), 843–857.Google Scholar
  10. [10]
    G. N. Frederickson and R. Janardan. Space efficient message routing inc-decomposable networks.SIAM Journal on Computing,19 (1990), 164–181.Google Scholar
  11. [11]
    M. R. Garey and D. S. Johnson.Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.Google Scholar
  12. [12]
    L. Kleinrock and F. Kamoun. Hierarchical routing for large networks.Computer Networks,1 (1977), 155–174.Google Scholar
  13. [13]
    L. Kleinrock and F. Kamoun. Optimal clustering structures for hierarchical topological design of large computer networks.Networks,10 (1980), 221–248.Google Scholar
  14. [14]
    D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables.Journal of the ACM,36(3) (1989), 510–530.Google Scholar
  15. [15]
    M. Santoro and R. Khatib. Labelling and implicit routing in networks.The Computer Journal,28 (1985), 5–8.Google Scholar
  16. [16]
    J. van Leeuwen and R. B. Tan. Routing with compact routing tables. InThe book of L, G. Rozemberg and A. Salomaa, eds., Springer-Verlag, New York, 1986, pp. 259–273.Google Scholar
  17. [17]
    J. van Leeuwen and R. B. Tan. Interval routing.The Computer Journal,30 (1987), 298–307.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • M. Flammini
    • 1
    • 2
  • G. Gambosi
    • 3
  • S. Salomone
    • 4
  1. 1.Dipartimento di Informatica e SistemisticaUniversity of Rome “La Sapienza,”RomeItaly
  2. 2.Dipartimento di Matematica Pura ed ApplicataUniversity of L'AquilaL'AquilaItaly
  3. 3.Dipartimento di MatematicaUniversity of Rome “Tor Vergata,”RomeItaly
  4. 4.Dipartimento di Matematica Pura ed ApplicataUniversity of L'AquilaL'AquilaItaly

Personalised recommendations