Advertisement

The Journal of Membrane Biology

, Volume 44, Issue 3–4, pp 321–330 | Cite as

Metabolic stimulation of polymorphonuclear leucocytes: Effects of tetravalent and divalent concanavalin A

  • D. Romeo
  • G. Zabucchi
  • G. Berton
  • C. Schneider
Article

Summary

Polymorphonuclear leucocytes (PMNL) undergo a marked activation of their oxidative metabolism upon interaction with surface-reactive soluble stimuli as well as with phagocytosable objects. To get some insight into the mechanism of this stimulation, we have compared the stimulatory activity of the tetravalent lectin concanavalin A (Con A) with that of the divalent derivative succinyl-Con A (S-Con A). Both lectins bind to the PMNL surface to the same extent. S-Con A, however, is much less efficient in stimulating the PMNL metabolism. When S-Con A-treated PMNL are further reacted with antiserum to Con A, a potentiation of the metabolic stimulation is observed. Normal serum or addition to PMNL of antiserum to Con A in the absence of lectin has no effect. Furthermore, if S-Con A is displaced from its receptors on the cell membrane with α-methyl mannopyranoside, the addition of antiserum fails to cause a respiratory stimulation. These results suggest that the initial triggering of the metabolic stimulation of PMNL is in part accomplished through cross-linkage of membrane constituents.

Keywords

Cell Membrane Human Physiology Normal Serum Oxidative Metabolism Marked Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babior, B.M., Kipnes, R.S., Curnutte, J.T. 1973. Biological defense mechanisms: The production by leukocytes of superoxide, a potential bactericidal agent.J. Clin. Invest. 52:741Google Scholar
  2. 2.
    Berlin, R.D., Fera, J.P. 1977. Changes in membrane microviscosity associated with phagocytosis: Effects of colchicine.Proc. Nat. Acad. Sci. USA 74:1072Google Scholar
  3. 3.
    Burger, M.M., Noonan, K.D. 1970. Restoration of normal growth by covering of agglutinin sites on tumour cell surface.Nature (London) 228:512Google Scholar
  4. 4.
    Davis, B.J. 1964. Disc electrophoresis. II. Method and application to human serum proteins.Ann. N.Y. Acad. Sci. 121:404Google Scholar
  5. 5.
    Fanger, M.W., Hart, D.A., Wells, J.V., Nisonoff, A. 1970. Requirement for cross-linkage in the stimulation of transformation of rabbit peripheral lymphocytes by antiglobulin reagents.J. Immunol. 105:1484Google Scholar
  6. 6.
    Gunther, G.R., Wang, J.L., Yahara, I., Cunningham, B.A., Edelman, G.M. 1973. Concanavalin A derivatives with altered biological activities.Proc. Nat. Acad. Sci. USA 70:1012Google Scholar
  7. 7.
    Hadden, J.W., Hadden, E.M., Sadlik, J.R., Coffey, R.G. 1976. Effects of concanavalin A and a succinylated derivative on lymphocyte proliferation and cyclic nucleotide levels.Proc. Nat. Acad. Sci. USA 73:1717Google Scholar
  8. 8.
    Kakinuma, K. 1974. Effects of fatty acids on the oxidative metabolism of leukocytes.Biochim. Biophys. Acta 348:76Google Scholar
  9. 9.
    Loor, F., Forni, L., Pernis, B. 1972. The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface immunoglobulins.Eur. J. Immunol. 2:203Google Scholar
  10. 10.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265Google Scholar
  11. 11.
    McClain, D.A., D'Eustachio, P., Edelman, G.M. 1977. Role of surface modulating assemblies in growth control of normal and transformed fibroblasts.Proc. Nat. Acad. Sci. USA 74:666Google Scholar
  12. 12.
    Mirelman, D., Galun, E., Sharon, N., Lotan, R. 1975. Inhibition of fungal growth by wheat germ agglutinin.Nature (London) 256:414Google Scholar
  13. 13.
    Nicolson, G.L. 1973. Anionic sites of human erythocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles.J. Cell Biol. 57:373Google Scholar
  14. 14.
    Nicolson, G.L. 1976. Transmembrane control of the receptors on normal and tumour cells. I. Cytoplasmic influence over cell surface components.Biochim. Biophys. Acta 457:57Google Scholar
  15. 15.
    Ohnishi, S., Ito, T. 1974. Calcium-induced phase separations in posphatidylserine-phosphatidylcholine membranes.Biochemistry 13:881Google Scholar
  16. 16.
    Oliver, J.M., Ukena, T.E., Berlin, R.D. 1974. Effect of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces.Proc. Nat. Acad. Sci. USA 71:394Google Scholar
  17. 17.
    Patriarca, P., Cramer, R., Marussi, M., Moncalvo, S., Rossi, F. 1971. Phospholipid splitting and metabolic stimulation in polymorphonuclear leukocytes.J. Reticuloendothel. Soc. 10:251Google Scholar
  18. 18.
    Poste, G., Alexander, D.J., Reeve, P., Hewlett, G. 1974. Modification of Newcastle disease virus release and cytopathogenicity in cells treated with plant lectins.J. Gen. Virol. 23:255Google Scholar
  19. 19.
    Romeo, D., Jug, M., Zabucchi, G., Rossi, F. 1974. Perturbation of leukocyte metabolism by nonphagocytosable concanavalin A-coupled beads.FEBS Lett. 42:90Google Scholar
  20. 20.
    Romeo, D., Zabucchi, G., Jug, M., Miani, N., Soranzo, M.R. 1975. Concanavalin A as a probe for the study of the mechanism of metabolic stimulation of leukocytes.In: Concanavalin A. T.K. Chowdhury and A.K. Weiss, editors. p. 273. Plenum, New YorkGoogle Scholar
  21. 21.
    Romeo, D., Zabucchi, G., Miani, N., Rossi, F. 1975. Ion movement across leukocyte plasma membrane and excitation of their metabolism.Nature (London) 253:542Google Scholar
  22. 22.
    Romeo, D., Zabucchi, G., Rossi, F. 1973. Reversible metabolic stimulation of polymorphonuclear leucocytes and macrophages by concanavalin A.Nature New Biol. 243:111Google Scholar
  23. 23.
    Romeo, D., Zabucchi, G., Rossi, F. 1977. Surface modulation of oxidative metabolism of polymorphonuclear leucocytes.In: Movement, Metabolism and Bactericidal Mechanisms of Phagocytes. F. Rossi, P. Patriarca and D. Romeo, editors. p. 153. Piccin Medical Books, PadovaGoogle Scholar
  24. 24.
    Root, R.K., Metcalf, J., Oshino, N., Chance, B. 1975. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors.J. Clin. Invest. 55:945Google Scholar
  25. 25.
    Rossi, F., Romeo, D., Patriarca, P. 1972. Mechanism of phagocytosis-associated oxidative metabolism in polymorphonuclear leucocytes and macrophages.J. Reticuloendothel. Soc. 12:127Google Scholar
  26. 26.
    Rossi, F., Zatti, M. 1966. Effect of phagocytosis on the carbohydrate metabolism of polymorphonuclear leucocytes.Biochim. Biophys. Acta 121:110Google Scholar
  27. 27.
    Rossi, F., Zatti, M., Patriarca, P., Cramer, R. 1971. Effect of specific antibodies on the metabolism of guinea pig polymorphonuclear leucocytes.J. Reticuloendothel. Soc. 9:67Google Scholar
  28. 28.
    Ryan, G.B., Borysenko, J.Z., Karnovsky, M.J. 1974. Factors affecting the redistribution of surface-bound concanavalin A on human polymorphonuclear leukocytes.J. Cell Biol. 62:351Google Scholar
  29. 29.
    Sbarra, A.J., Karnovsky, M.L. 1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes.J. Biol. Chem. 234:1355Google Scholar
  30. 30.
    Schekman, R., Singer, S.J. 1976. Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal but not adult humans.Proc. Nat. Acad. Sci. USA 73:4075Google Scholar
  31. 31.
    Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W., Elson, E.L. 1976. Lateral transport on cell membranes: Mobility of concanavalin A receptors on myoblasts.Proc. Nat. Acad. Sci. USA 73:2409Google Scholar
  32. 32.
    Tedesco, F., Trani, S., Soranzo, M.R., Patriarca, P. 1975. Stimulation of glucose oxidation in human polymorphonuclear leukocytes by C3-Sepharose and soluble C 567.FEBS Lett. 51:232Google Scholar
  33. 33.
    Wang, J.L., McClain, D.A., Edelman, G.M. 1975. Modulation of lymphocyte mitogenesis.Proc. Nat. Acad. Sci. USA 72:1917Google Scholar
  34. 34.
    Zabucchi, G., Romeo, D. 1976. The dissociation of exocytosis and respiratory stimulation in leukocytes by ionophores.Biochem. J. 156:209Google Scholar
  35. 35.
    Zatti, M., Rossi, F. 1967. Relationship between glycolysis and respiration in surfactant treated leucocytes.Biochim. Biophys. Acta 148:553Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • D. Romeo
    • 1
  • G. Zabucchi
    • 1
  • G. Berton
    • 1
  • C. Schneider
    • 1
  1. 1.Departments of Biochemistry and General PathologyUniversity of TriesteTriesteItaly

Personalised recommendations