Advertisement

The Journal of Membrane Biology

, Volume 44, Issue 3–4, pp 211–232 | Cite as

Changes in lipid ordering and state of aggregation in lymphocyte plasma membranes after exposure to mitogens

  • C. C. Curtain
  • F. D. Looney
  • J. J. Marchalonis
  • J. K. Raison
Article

Summary

An electron spin probe study was made of the effect of a number of mitogenic agents on the ordering and state of aggregation of the plasma membrane lipids of lymphocytes. These agents, which included phytohemagglutinin, Concanavalin A, the calcium ionophore A23187 and periodate, caused a 20% decrease in lipid ordering in the region of the bilayer probed by 5-nitroxide stearic acid. The corresponding methyl ester probe showed marked probe-probe interaction under the same conditions indicating an aggregation of lipids in the area probed by this label. Studies with mixed lipid vesicles and gangliosidefree cells indicate that these areas are rich in glycolipids capable of hydrogen bonding to the ester probe. The decrease in ordering and the increase in aggregation of the membrane lipids were correlated with the patching and capping of the ligand-receptor complexes. Furthermore, the disappearance of fluorescent ligand from the surface of treated cells corresponded with the return of the spectral parameters of the probes to control cell values.

It was concluded that glycolipids might play an important role in ligand-induced cell surface changes either as bearers of receptor groups, as in the case of some gangliosides, or in association by hydrogen-bonding with receptor proteins.

Keywords

Stearic Acid Periodate A23187 Calcium Ionophore Spin Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwood, G., Asherson, G., Davey, M.J., Goodford, P. 1971. The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin.Immunology 21:509Google Scholar
  2. Barnett, R.E., Scott, R.E., Furcht, L.T., Kersey, J.H. 1974. Evidence that mitogenic lectins induce changes in lymphocyte membrane fluidity.Nature (London) 249:465Google Scholar
  3. Beppu, M., Terao, T., Osawa, T. 1976. Preparation of monovalent succinyl-concanavalin A and its mitogenic activity.J. Biochem. (Tokyo) 79:1113Google Scholar
  4. Berg, K.J. van den, Betel, I. 1973. Increased transport of 2-aminoisobutyric acid in rat lymphocytes stimulated with concanavalin A.Exp. Cell Res. 76:63Google Scholar
  5. Berg, K.J. van den, Betel, I. 1974. Regulation of amino acid uptake in lymphocytes stimulated by mitogens. In. Increase in AIB transport dependent on cell metabolism.Exp. Cell Res. 84:412Google Scholar
  6. Böyum, A. 1968. Isolation of leucocytes from human blood.Scand. J. Clin. Lab. Invest. 21 (Suppl. 97):9Google Scholar
  7. Craig, S.W., Cuatrecasas, P. 1975. Mobility of cholera toxin receptors on rat lymphocyte membranes.Proc. Nat. Acad. Sci. USA 72:3844Google Scholar
  8. Critchley, D.R., McPherson, I. 1973. Cell density dependent glycolipids in NIL2 hamster cells, derived malignant and transformed cell lines.Biochim. Biophys. Acta 296:145Google Scholar
  9. Curtain, C.C., Anderson, N. 1972. Parasite antigens and host antibodies inOstertagia circumcinta infection of the sheep.Int. J. Parasitol. 2:449Google Scholar
  10. Devaux, P., McConnell, H.M. 1972. Lateral diffusion in spin-labeled phosphatidylcholine multilayers.J. Am. Chem. Soc. 94:4475Google Scholar
  11. Dodd, N.J.F. 1975. PHA and lymphocyte membrane fluidity.Nature (London) 257:827Google Scholar
  12. Edelman, G.M. 1976. Surface modulation in cell recognition and growth; Some new hypotheses on phenotypic alteration and transmembranous control of cell surface receptors.Science 94:218Google Scholar
  13. Esselman, W.J., Miller, H.C. 1974. Brain and thymus lipid inhibition of antibrain-associated θ-cytotoxicity.J. Exp. Med. 139:445Google Scholar
  14. Farias, R.N., Bloj, B., Morero, R.D., Sineriz, F., Trucco, R.E. 1975. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition.Biochim. Biophys. Acta 451:231Google Scholar
  15. Feinstein, M.B., Fernandez, S.M., Sha'afi, R.I. 1975. Fluidity of natural membranes and phosphatidylserine and ganglioside dispersions. Effects of local anaesthetics, cholesterol and protein.Biochim. Biophys. Acta 413:354Google Scholar
  16. Fisher, D.B., Mueller, G.C. 1971. Studies on the mechanism by which phytohaemagglutinin rapidly stimulates phospholipid metabolism of human lymphocytes.Biochim. Biophys. Acta 248:434Google Scholar
  17. Gaffney, B.J. 1975. Fatty acid chain flexibility in the membranes of normal and transformed fibroblasts.Proc. Nat. Acad. Sci. USA 72:664Google Scholar
  18. Gardas, A., Koscielak, J. 1973. New form of A-, B-, and H-blood-group-active substances extracted from erythrocyte membranes.Eur. J. Biochem. 32:178Google Scholar
  19. Gardas, A., Koscielak. J. 1974. Megaloglycolipids — unusually complex glycosphingolipids of human erythrocyte membrane with A-, B-, H- and I-blood group specificity.FEBS. Lett. 42:101Google Scholar
  20. Gottfried, E.L. 1972. Lipid patterns of leukocytes in health and disease.Semin. Hematol. 9:241Google Scholar
  21. Gunther, G.R., Wang, J.L., Yahara, I., Cunningham, B.Y., Edelman, G.M. 1973. Concanavalin A derivatives with altered biological activities.Proc. Natl. Acad. Sci. USA. 70:1012Google Scholar
  22. Heyningen, W.E. van 1974. Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin.Nature (London) 249:415Google Scholar
  23. Hollenberg, M.D., Fishman, P.H., Bennett, V., Cuatrecasas, P. 1974. Cholera toxin and cell growth: Role of membrane gangliosides.Proc. Nat. Acad. Sci. USA 71:4224Google Scholar
  24. Ji, T.H. 1974. Crosslinking of glycolipids in erythrocyte ghost membrane.J. Biol. Chem. 249:7841Google Scholar
  25. Jost, P., Waggoner, A.S., Griffith, O.H. 1971. Spin labeling and membrane structure.In: The Structure and Function of Biological Membranes. L.I. Rothfield, editor. Ch. 3, p 84. Academic Press, New YorkGoogle Scholar
  26. Keana, J.F.W., Keana, S.B., Beetham, D. 1967. A new versatile spin label.J. Am. Chem. Soc. 89:3055Google Scholar
  27. Keith, A.D., Horvat, D., Snipes, W. 1974. Spectral characterization of 15N spin labels.Chem. Phys. Lipids 13:49Google Scholar
  28. King, C.A., Heyningen, W.E. van 1973. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside.J. Infect. Dis. 127:639Google Scholar
  29. Kury, P.G., McConnell, H.M. 1975. Regulation of membrane flexibility in human erythrocytes.Biochemistry 14:2798Google Scholar
  30. Kury, P.G., Ramwell, P.W., McConnell, H.M. 1974. The effect of prostaglandins E1 and E2 on the human erythrocyte as monitored by spin labels.Biochem. Biophys. Res. Commun. 56:478Google Scholar
  31. Levy, H.B., Sober, H.A. 1960. A simple chromatographic method for the preparation of gamma globulin.Proc. Soc. Exp. Biol. Med. 103:250Google Scholar
  32. Masuzawa, Y., Osawa, T., Inoue, K., Nojima, S. 1973. Effect of various mitogens on the phospholipid metabolism of human peripheral lymphocytes.Biochim. Biophys. Acta 326:339Google Scholar
  33. Pantelouris, E.M. 1968. Absence of thymus in a mouse mutant.Nature (London) 217:370Google Scholar
  34. Pascher, I. 1976. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability.Biochim. Biophys. Acta 455:433Google Scholar
  35. Peters, J.H., Hausen, P. 1971. Effect of phytohaemagglutinin on lymphocyte membrane transport. II. Stimulation of ‘facilitated diffusion’ of 3-0-methyl-glucose.Eur. J. Biochem. 19:509Google Scholar
  36. Quastel, M.R., Kaplan, J.G. 1970. Early stimulation of potassium uptake in lymphocytes treated with PHA.Exp. Cell Res. 63:230Google Scholar
  37. Redwood, W.R., Polefka, T.G. 1976. Lectin-receptor interactions in liposomes. II. Interaction of wheat germ agglutinin with phosphatidyl choline vesicles containing incorporated monosialoganglioside.Biochim. Biophys. Acta 455:631Google Scholar
  38. Révész, T., Greaves, M. 1975. Ligand-induced redistribution of lymphocyte membrane ganglioside GM1.Nature (London) 257:103Google Scholar
  39. Sackman, E., Trauble, H., Galla, H., Overath, P. 1973. Lateral diffusion, protein mobility and phase transitions inEscherichia coli membranes. A spin label study.Biochemistry 12:5360Google Scholar
  40. Sauerheber, R.D., Gordon, L.M., Crosland, R.D., Kuwahara, M.D. 1977. Spin label studies on rat liver and heart plasma membranes: Do probe-probe interactions interfere with the measurement of membrane properties?J. Membrane Biol. 31:131Google Scholar
  41. Sharom, F.J., Barratt, D.G., Thede, A.E., Grant, C.W.M. 1976. Glycolipids in model membranes: Spin label and freeze etch studies.Biochim. Biophys. Acta 455:485Google Scholar
  42. Slomiany, B.L., Slomiany, A. 1977. Complex glycosphingolipids with blood group A specificity.FEBS. Lett. 73:175Google Scholar
  43. Toyoshima, S., Osawa, T. 1975. Lectins fromWistaria floribunda seeds and their effect on membrane fluidity of human peripheral lymphocytes.J. Biol. Chem. 250:1655Google Scholar
  44. Verma, S.P., Wallach, D.F.H. 1975. Evidence for constrained lipid mobility in the erythrocyte ghost. A spin label study.Biochim. Biophys. Acta 382:73Google Scholar
  45. Wedner, H.J., Parker, C.W. 1976. Lymphocyte activation.Prog. Allergy 20:195Google Scholar
  46. Weiss, D.E. 1973a. Lipid mobility and function in biological membranes.Experientia 29:249Google Scholar
  47. Weiss, D.E., 1973b. The role of lipid in energy transmission and conservation in functional biological membranes.Sub-Cell. Biochem. 2:201Google Scholar
  48. Whitney, R.B., Sutherland, R.M. 1973. Effects of chelating agents on the interaction of phytohaemagglutinin with lymphocytes and the subsequent stimulation of amino acid uptake.Biochim. Biophys. Acta 298:790Google Scholar
  49. Zenser, T.V., Petrella, V.J., Hughes, F. 1976. Spin-labeled stearates as probes for microenvironment of murine thymocyte adenylate cyclase-cyclic adenosine 3′∶5′-monophosphate system.J. Biol. Chem. 251:7431Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • C. C. Curtain
    • 1
    • 2
    • 3
  • F. D. Looney
    • 1
    • 2
    • 3
  • J. J. Marchalonis
    • 1
    • 2
    • 3
  • J. K. Raison
    • 1
    • 2
    • 3
  1. 1.CSIRO Division of Chemical TechnologySouth MelbourneAustralia
  2. 2.The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  3. 3.Plant Physiology Unit, CSIRO Division of Food Research and School of Biological SciencesMacquarie UniversityNorth RydeAustralia

Personalised recommendations