Advertisement

Experientia

, Volume 33, Issue 6, pp 714–716 | Cite as

Enzymatic activities of muscle fibres differentiated, in vitro, from pectoralis major (white) and adductor magnus (red) muscles of chick embryos

  • J. Nouguès
  • F. Bacou
Article

Summary

Specific activities of NADP isocitrate dehydrogenase and acetylcholinesterase were significantly higher in muscle fibres differentiated, in vitro, from myoblasts of adductor magnus (red) than pectoralis major (white) muscles 10-day-old chick embryos. This is evidence, as far as enzyme activities, are concerned, that myoblasts from different types of skeletal muscles are able to give, in tissue culture, muscle fibres of different properties, even in the absence of nerve supply.

Keywords

Enzyme Enzymatic Activity Skeletal Muscle Muscle Fibre Tissue Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    K. Okazaki and H. Holtzer, Proc nat. Acad. Sci. USA56, 1484 (1966).Google Scholar
  2. 3.
    R. Bischoff and H. Holtzer, J. cell. Biol.41, 188 (1969).Google Scholar
  3. 4.
    A. J. Buller, J. C. Eccles and R. M. Eccles, J. Physiol., Lond.150, 417 (1960).Google Scholar
  4. 5.
    F. A. Sréter, A. R. Luff and J. Gergely, J. gen. Physiol.66, 811 (1975).Google Scholar
  5. 6.
    G. Vrbová, J. Physiol., Lond.166, 241 (1963).Google Scholar
  6. 7.
    A. J. Buller and D. M. Lewis, J. Physiol., London.178, 326 (1965).Google Scholar
  7. 8.
    M. Nicolet, P. Thibert and P. Bechtel, C. r. Séanc. Soc. Biol.168, 1251 (1974).Google Scholar
  8. 9.
    R. Jones and G. Vrbová, J. Physiol., Lond.236, 517 (1974).Google Scholar
  9. 10.
    A. Pestronk, D. B. Drachman and J. W. Griffin, Nature260, 352 (1976).Google Scholar
  10. 11.
    V. Askanas, S. A. Shafiq and A. T. Milhorat, Expl Neurol.37, 218 (1972).Google Scholar
  11. 12.
    S. M. Heywood, A. S. Havaranis and H. Herrmann, J. cell. Physiol.82, 319 (1973).Google Scholar
  12. 13.
    A. Suzuki, J. Tohoku, Agric. Res.23, 45, (1972).Google Scholar
  13. 14.
    P. Vigneron, personal communication (1975).Google Scholar
  14. 15.
    R. Bischoff and H. Holtzer, J. cell. Biol.36, 111 (1967).Google Scholar
  15. 16.
    A. Shainberg, G. Yagil and D. Yaffe, Devl Biol.25, 1 (1971).Google Scholar
  16. 17.
    D. C. Turner, V. Maier and H. M. Eppenberger. Devl Biol.37, 63 (1974).Google Scholar
  17. 18.
    R. A. Fluck and R. C. Strohman, Devl Biol.33, 417 (1973).Google Scholar
  18. 19.
    G. Giacobini, G. Filogamo, M. Weber, P. Boquet and J. P. Changeux, Proc. Nat. Acad. Sci. USA70, 1708 (1973).Google Scholar
  19. 20.
    H. U. Bergmeyer, in: Methods of enzymatic analysis, p. 728, 985 and 859. Academic Press, New York 1963.Google Scholar
  20. 21.
    G. L. Ellman, K. D. Courtney, V. Andres and R. M. Featherstone, Biochem. Pharmac.1, 88 (1961).Google Scholar
  21. 22.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. biol. Chem.193, 265 (1951).Google Scholar
  22. 23.
    B. W. Wilson, P. S. Nieberg, C. R. Walker, T. A. Linkhart and D. M. Fry, Devl Biol.33, 285 (1973).Google Scholar
  23. 24.
    E. Neumann, D. Nachmansohn and A. Katchalsky, Proc. nat. Acad. Sci. USA70, 727 (1973).Google Scholar
  24. 25.
    E. A. Barnard, J. Wieckowski and T. H. Chiu, Nature234, 207 (1971).Google Scholar
  25. 26.
    A. J. Sytkowski, Z. Vogel and M. W. Nirenberg, Proc. nat. Acad. Sci. USA70, 270 (1973).Google Scholar
  26. 27.
    G. D. Fischbach and S. A. Cohen, Devl Biol.31, 147 (1973).Google Scholar
  27. 28.
    A. L. Harvey and W. F. Dryden, Differentiation2, 237, (1974).Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • J. Nouguès
    • 1
  • F. Bacou
    • 1
  1. 1.Station de Physiologie AnimaleInstitut National de la Recherche Agronomique, E. N. S. A.Montpellier-Cédex(France)

Personalised recommendations