Skip to main content
Log in

Diffusion loading conditions determine recovery of protein synthesis in electroporated P3X63 Ag8 cells

  • Full Papers
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Using the suspension cell line P3X63 Ag8 we have studied the impact of the composition of the diffusion medium on cellular protein synthesis under standard electroporation conditions in TBS-Na. This buffer contains the high saline concentration usually present in electroporation-mediated DNA transfection. Electroporation in the presence of TBS-Na resulted in an immediate shut-off of protein synthesis, even though both FITC-dextran (Mr 40 kD) and Semliki Forest virus core protein (Mr 33 kD) were incorporated efficiently into the cytoplasm across the electropores at 0°C. Subsequent resealing of the pores was completed after a 5-min incubation at 37°C. When compared with control cells, overall protein synthesis of electroporated cells recovered slowly to resume a 30% activity after 1 h of incubation at 37°C. We have determined optimal conditions for diffusion loading (which necessitates the presence of ATP, GTP, amino acids, K+, Mg2+, and Ca2+) and resealing (in the presence of K+, Mg2+, and Ca2+), leading to a full and lasting recovery of protein synthesis within 5 min after pore closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graessmann, M., and Graessmann, A., Proc. natl Acad. Sci. USA73 (1976) 366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Graham, F. L., and van der Eb, A. J., Virology52 (1973) 456.

    Article  CAS  PubMed  Google Scholar 

  3. Dick, J. E., Magli, M. C., Phillips, R. A., and Bernstein, A., Trends Genet.2 (1986) 165.

    Article  CAS  Google Scholar 

  4. Gregoriadis, G., and Buckland, R. A., Nature244 (1973) 170.

    Article  CAS  PubMed  Google Scholar 

  5. Furusawa, M., Nishimura, T., Yamaizumi, M., and Okada, Y., Nature249 (1974) 449.

    Article  CAS  PubMed  Google Scholar 

  6. Baker, P. F., and Knight, D. E., Meth. Enzymol.98 (1983) 28.

    Article  CAS  Google Scholar 

  7. Knight, D. E., and Scrutton, M. C., Biochem. J.234 (1986) 497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zimmermann, U., Scheurich, P., Pilwat, G., and Benz, R., Angew. Chem. Int. (Ed. Engl.)20 (1981) 325.

    Article  Google Scholar 

  9. Kurata, S.-I., Tsukakoshi, M., Kasuya, T., and Ikawa, Y., Expl Cell. Res.162 (1986) 372.

    Article  CAS  Google Scholar 

  10. Chu, G., Hayakawa, H., and Berg, P., Nucl. Acids Res.15 (1987) 1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H., EMBO J.1 (1982) 841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stopper, H., Zimmermann, U., and Wecker, E., Z. Naturforsch.40c (1985) 929.

    Article  CAS  Google Scholar 

  13. Baker, P. F., Knight, D. E., and Umbach, J. A., Cell Calcium6 (1985) 5.

    Article  CAS  PubMed  Google Scholar 

  14. Knight, D. E., and Scrutton, C., Eur. J. Biochem.160 (1986) 183.

    Article  CAS  PubMed  Google Scholar 

  15. Tolleshaug, H., and Seglen, P. O., Eur. J. Biochem.153 (1985) 223.

    Article  CAS  PubMed  Google Scholar 

  16. Michel, M. R., Elgizoli, M., Kempf, C., and Koblet, H., Experientia43 (1987) 676.

    Google Scholar 

  17. Vienken, J., Jeltsch, E., and Zimmermann, U., Cytobiologie, Eur. J. Cell Biol.17 (1978) 182.

    CAS  Google Scholar 

  18. Zimmermann, U., Riemann, F., and Pilwat, G., Biochim. Biophys. Acta436 (1976) 460.

    Article  CAS  PubMed  Google Scholar 

  19. van Renswoude, J., Bridges, K. R., Harford, J. B., and Klausner, R. D., Proc. natl Acad. Sci. USA79 (1982) 6186.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karonen, S.-L., Mörsky, P., Siren, M., and Seuderling, U., Analyt. Biochem.67 (1975) 1.

    Article  CAS  PubMed  Google Scholar 

  21. Schaefer, A., Kuehne, J., Zibirre, R., and Koch, G., J. Virol.44 (1982) 444.

    Article  CAS  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem.193 (1951) 265.

    Article  CAS  PubMed  Google Scholar 

  23. Teissie, J., and Rols, M. P., Biochem. biophys. Res. Commun.140 (1986) 258.

    Article  CAS  PubMed  Google Scholar 

  24. Henderson, R., and Unwin, P. N. T., Nature257 (1975) 28.

    Article  CAS  PubMed  Google Scholar 

  25. Boggs, S. S., Gregg, R. G., Borenstein, N., and Smithies, O., Expl Hemat.14 (1986) 988.

    CAS  Google Scholar 

  26. Heppel, L. A., Weisman, G. A., and Friedberg, I., J. Membr. Biol.86 (1985) 189.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, M.R., Elgizoli, M., Koblet, H. et al. Diffusion loading conditions determine recovery of protein synthesis in electroporated P3X63 Ag8 cells. Experientia 44, 199–203 (1988). https://doi.org/10.1007/BF01941705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01941705

Key words

Navigation