BIT Numerical Mathematics

, Volume 21, Issue 3, pp 374–376 | Cite as

Deciding Hadamard equivalence of Hadamard matrices

  • Charles J. Colbourn
  • Marlene J. Colbourn
Scientific Notes


Equivalence of Hadamard matrices can be decided inO(log2n) space, and hence in subexponential time. These resource bounds follow from the existence of small distinguishing sets.


Computational Mathematic Hadamard Matrice Resource Bound Subexponential Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Cooper, J. Milas, and W. D. Wallis,Hadamard equivalence, in:Combinatorial Mathematics (D. A. Holton and J. Seberry, eds.) Springer-Verlag (1978), 126–135.Google Scholar
  2. 2.
    L. M. Goldschlager,Synchronous parallel computation, Ph. D. thesis, University of Toronto, 1977.Google Scholar
  3. 3.
    J. E. Hopcroft and J. D. Ullman,Formal Languages and Their Relation to Automata, Addison-Wesley (1969).Google Scholar
  4. 4.
    J. S. Leon,An algorithm for computing the automorphism group of a Hadamard matrix, Journal of Combinatorial Theory A27 (1979), 289–306.Google Scholar
  5. 5.
    R. J. Lipton, L. Snyder, and T. Zalcstein,The complexity of word and isomorphism problems for finite groups, Tech. Rep. 91/76, Yale Univ., (1976).Google Scholar
  6. 6.
    B. D. McKay,Hadamard equivalence via graph isomorphism, Discrete Math. 27 (1979), 213–214.Google Scholar
  7. 7.
    W. D. Wallis and J. Wallis,Equivalence of Hadamard matrices, Israel J. Math. 7 (1969), 122–128.Google Scholar

Copyright information

© BIT Foundations 1981

Authors and Affiliations

  • Charles J. Colbourn
    • 1
  • Marlene J. Colbourn
    • 1
  1. 1.Department of Computational ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations