Communications in Mathematical Physics

, Volume 69, Issue 1, pp 31–56 | Cite as

On systems of particles with finite-range and/or repulsive interactions

  • L. N. Vaserstein
Article

Abstract

In an arbitrary system of particles with central repulsive interactions, right and left velocities exist at each moment of time, including infinity. An arbitrary system of particles with finite-range interactions splits into independent bounded clusters. The number of collisions in Sinai's billiard is finite.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sinai, Ya.G.: Billiard trajectories in polyhedral angle. Usp. Mat. Nauk33, 231–232 (1978)Google Scholar
  2. 2.
    Galperin, G.A.: Elastic collisions of particles on the line. Usp. Mat. Nauk33, 211–212 (1978)Google Scholar
  3. 3.
    Leontovich, A.M.: On existence of non-bounded oscillating trajectories in a billiard problem. Dokl. Akad. Nauk145, 523–526 (1962)Google Scholar
  4. 4.
    Sandri, G., Sullivan, R.D., Noren, P.: Collisions of three hard spheres. Phys. Rev. Lett.13, 743–745 (1964)Google Scholar
  5. 5.
    Hunziker, W.: TheS-matrix in classical mechanics. Commun. Math. Phys.8, 282–299 (1968)Google Scholar
  6. 6.
    Saari, D.: Expanding gravitational systems. Trans. AMS156, 219–240 (1971)Google Scholar
  7. 7.
    Moser, J.: The scattering problem for some particle system on the line. In: Lecture notes in mathematics597, 441–463 (1978)Google Scholar
  8. 8.
    Halpern, B.: Strange billiard tables. Trans. AMS232, 297–306 (1977) See also Mathematical Calendar 79, p. “January”. Berlin, Heidelberg, New York: Springer 1979Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • L. N. Vaserstein
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations