Skip to main content
Log in

Evidence for Ca2+ control of the transducer mechanism in crayfish stretch receptor

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Recording from the dendrite membrane indicated a resting potential of −51.6 mV, which was reduced by inhibition of the Na+/K+ pump. Voltage clamp at rest revealed a small inward current between −50 and −80 mV and a larger outward current at clamp potentials of −40 to +30 mV. Using ramp-changes of muscle tension as stimuli a time-variant tension-induced inward current (TIC) became apparent, the amplitude of which decreased towards larger depolarizing voltages until at +18 mV the current reversed the direction. The time course of the conductance changes corresponds to similar phases in the generator potential. The outward current only responded to fast reductions in tension, decreasing transiently. A contribution of the active Na+/K+ pump to the hyperpolarizing potential response is suggested by the effects of K-removal or Na-substitution by Li+. In Na-free choline chloride media the generator potential and the TIC was depressed by 70–85%. Additional removal of Ca2+ abolished the TIC. In contrast, lowering the Ca2+ level in presence of Na+ decreased the membrane resistance and markedly enhanced the TIC (maximally eightfold at 10−5 m Ca2+) while 75–150mm Ca2+ or intracellular application of a Ca-ionophore had the reverse effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, H. M., Hagiwara, S., Koike, H. Meech, R. M. 1970. Membrane properties of a barnacle photoreceptor examined by the voltage clamp technique.J. Physiol. 208: 385

    PubMed  Google Scholar 

  • Carpenter, D. O., Alving, B. 1968. A contribution of an electrogenic Na+-pump to membrane potential inAplysia neurons.J. Gen. Physiol. 52:1

    PubMed  Google Scholar 

  • Case, G. D., Vanderkooi, J. M., Scarpa, A. 1974. Physical properties of biological membranes determined by the fluorescence of the calcium ionophore A 23187.Arch. Biochem. Biophys. 162:174

    PubMed  Google Scholar 

  • Chaplain, R. A., Michaelis, B., Coenen, R. 1971. Systems analysis of biological receptors. I. A quantitative description of the input-output characteristics of the slowly adapting stretch receptor of the crayfish.Kybernetik 9:85

    PubMed  Google Scholar 

  • Coenen, R., Chaplain, R. A. 1973. Systems analysis of biological receptors. II. The transfer characteristics of the frog muscle spindle.Kybernetik 13:183

    PubMed  Google Scholar 

  • Dunham, E. T., Glynn, I. M. 1961. Adenosine triphosphatase activity and the active movements of alkali metal ions.J. Physiol. 156:274

    PubMed  Google Scholar 

  • Edwards, C. C., Terzuolo, C. A., Washizu, Y. 1963. The effects of changes of the ionic environment upon an isolated crustancean sensory neuron.J. Neurophysiol. 26:948

    PubMed  Google Scholar 

  • Eimerl, S., Savion, N., Heichal, O., Selinger Z. 1974. Induction of enzyme secretion in rat pancreatic slices using the ionophore A 23187 and calcium. An experimental by-pass of the hormone receptor pathway.J. Biol. Chem. 249:3991

    PubMed  Google Scholar 

  • Eyzaguirre, C., Kuffler S. W. 1955a. Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish.J. Gen. Physiol. 39:87

    PubMed  Google Scholar 

  • Eyzaguirre, C., Kuffler, S. W. 1955b. Further study of soma dendrite and axon excitation in single neurons.J. Gen. Physiol. 39:121

    PubMed  Google Scholar 

  • Florey, E., Florey, E. 1955. Microanatomy of the abdominal stretch receptor of the crayfish (Astacus fluviatilis L.).J. Gen. Physiol. 39:69

    PubMed  Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A. L. 1957. The action of calcium in the electrical properties of squid axons.J. Physiol. 137:218

    PubMed  Google Scholar 

  • Fulpius, B., Baumann, F. 1969. Effects of sodium, potassium, and calcium ions on slow and spike potentials in single photoreceptor cells.J. Gen. Physiol. 53:541

    PubMed  Google Scholar 

  • Geduldig, D., Junge, D. 1968. Sodium and calcium components of action potentials in theAplysia giant neurone.J. Physiol. 199:347

    PubMed  Google Scholar 

  • Gray, J. A. B., Sato, M. 1953. Properties of receptor potentials in Pacinian corpuscles.J. Physiol. 122:610

    PubMed  Google Scholar 

  • Hagins, W. A. 1972. The visual process.Annu. Rev. Biophys. Bioeng. 1:131

    PubMed  Google Scholar 

  • Harreveldt, A. van 1936. A physiological solution for freshwater crustaceans.Proc. Soc. Exp. Biol. 34:428

    Google Scholar 

  • Hasan, Z., Houk, J. C. 1972. Non-linear behaviour of primary spindle receptors in response to small, slow ramp stretches.Brain Res. 44:680

    PubMed  Google Scholar 

  • Hendriks, Th., Daemen, F. J. M., Bonting, S. L. 1974. Biochemical aspects of the visual process. XXV. Light-induced calcium movement in isolated frog rod outer segments.Biochim. Biophys. Acta 345:468

    Google Scholar 

  • Husmark, I., Ottoson, D. 1970. Relation between tension and sensory response of isolated frog muscle spindle during stretch.Acta Physiol. Scand. 79:321

    PubMed  Google Scholar 

  • Husmark, I., Ottoson, D. 1971a. The contribution of mechanical factors to the early adaptation of the spindle response.J. Physiol. 212:577

    PubMed  Google Scholar 

  • Husmark, I., Ottoson, D. 1971b. Ionic effects on spindle adaptation.J. Physiol. 218:257

    PubMed  Google Scholar 

  • Inoue, J., Kobatake, Y., Tasaki, J. 1973. Excitability, instability and phase transitions in squid axon membrane under internal perfusion with dilute salt solution.Biochim. Biophys. Acta 307:471

    PubMed  Google Scholar 

  • Katz, B. 1950. Depolarization of sensory terminals and the initiation of impulse in the muscle spindle.J. Physiol. 111:261

    Google Scholar 

  • Klie, J. W., Wellhöner, H. H. 1973. Voltage clamp studies on the stretch response in the neuron of the slowly adapting crayfish stretch receptor.Pflüg. Arch. 342:93

    Google Scholar 

  • Kugler, J., Chaplain, R. A. 1974. Origin of impulse initiation in the slowly adapting stretch receptor of the crayfish.Pflüg. Arch. 351:339

    Google Scholar 

  • Loewenstein, W. R. 1961. Excitation and inactivation in a receptor membrane.Ann. N.Y. Acad. Sci. 94:510

    PubMed  Google Scholar 

  • Loewenstein, W. R. 1971. Mechano-electrical transduction in the Pacinian corpuscle. Initiation of sensory impulses in a mechanoreceptor.In: Handbook of Sensory Physiology. W. R. Loewenstein, editor. Vol. I, p. 260. Springer-Verlag, Berlin

    Google Scholar 

  • Loewenstein, W. R., Terzuolo, C. A., Washizu, Y. 1963. Separation of transducer and impulse-generating processes in sensory receptors.Science 142:1180

    PubMed  Google Scholar 

  • Millecchia, R., Mauro, A. 1969. The ventral photoreceptor cells ofLimulus. III. A voltage-clamp study.J. Gen. Physiol. 54:331

    PubMed  Google Scholar 

  • Moore, L. E. 1971. Effect of temperature and calcium ions on rate constants of myelinated nerve.Amer. J. Physiol. 221:131

    PubMed  Google Scholar 

  • Nakajima, S., Onodera, K. 1969. Adaptation of the generator potential in the crayfish stretch receptors under constant length and tension.J. Physiol. 200:187

    PubMed  Google Scholar 

  • Obara, S., Grundfest, H. 1968. Effects of lithium on different membrane components of crayfish stretch receptor neurons.J. Gen. Physiol. 51:635

    PubMed  Google Scholar 

  • Ottoson, D. 1964. The effect of sodium deficiency on the response of the isolated muscle spindle.J. Physiol. 171:109

    PubMed  Google Scholar 

  • Ottoson, D. 1965. The action of calcium on the frog's isolated muscle spindle.J. Physiol. 178:68

    PubMed  Google Scholar 

  • Ottoson, D., Shepherd, G. M. 1971. Transducer properties and integrative mechanisms in the frog's muscle spindle.In: Handbook of Sensory Physiology. W. R. Loewenstein, editor. Vol. I, p. 442. Springer-Verlag, Berlin

    Google Scholar 

  • Reuter, H. 1967. The dependence of slow inward curren in Purkinje fibres on the extracellular calcium concentration.J. Physiol. 192:479

    PubMed  Google Scholar 

  • Sokolove, P. G., Cooke, I. M. 1971. Inhibition of impulse activity in a sensory neuron by an electrogenic pump.J. Gen. Physiol. 57:125

    PubMed  Google Scholar 

  • Tasaki, I. 1968. Nerve Excitation. C. C. Thomas, Springfield, Illinois

    Google Scholar 

  • Terzuolo, C. A., Washizu, Y. 1962. Relation between stimulus strength generator potential and impulse frequency in stretch receptor of crustacea.J. Neurophysiol. 25:56

    PubMed  Google Scholar 

  • Wendler, L. 1963. Über die Wirkungskette zwischen Reiz und Erregung (Versuche an abdominalen Streckrezeptoren dekapoder Krebse).Z. Vergl. Physiol. 47:279

    Google Scholar 

  • Werman, R., Grundfest, H. 1961. Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers.J. Gen. Physiol. 44:997

    PubMed  Google Scholar 

  • Yamagishi, S., Grundfest, H. 1971. Contributions of various ions to the resting and action potentials of crayfish medial giant axons.J. Membrane Biol. 5:345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplain, R.A. Evidence for Ca2+ control of the transducer mechanism in crayfish stretch receptor. J. Membrain Biol. 21, 335–351 (1975). https://doi.org/10.1007/BF01941075

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01941075

Keywords

Navigation