Skip to main content
Log in

Mechanism of inhibition of the proximal tubular isotonic fluid absorption by polylysine and other cationic polyamino acids

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The present study was initiated with the hope of clarifying the role of negative charges in the luminal brush border membrane in the overall process of transepithelial isotonic sodium and water absorption. Using micropuncture techniques, cationic polyamino acids such as polylysine (mol wt 100,000, 17,000 and 1,500–5,000, 1 mg/ml), tetralysine, polyornithine (mol wt 100,000, 1 mg/ml), polyethyleneimine (2 mg/ml), polymyxin B (2 mg/ml), protamine sulfate (25 mg/ml) and histone (0.5 mg/ml) were perfused through the segments of rat kidney proximal tubule for 30 sec to 2 min. The rate of isotonic fluid absorption was measured before and after each perfusion with the Gertz's split drop method using Ringer's solution as a shrinking drop. Polylysine 100,000 and 17,000 and polyornithine were the most potent, inhibiting isotonic reabsorption by 93%. The sequence of inhibitory effect was: polylysine 100,000≃polyornithine 100,000≃polylysine 17,000>polyethyleneimine>polylysine 1,500–5,000≃polymyxin B> protamine sulfate ≃ histone. In contrast, tetralysine (2 mg/ml) showed no inhibitory effect. Electrical potential difference (p.d.) of the proximal tubular cells was destroyed within 10 sec of luminal perfusion with polylysine 100,000 (1 mg/ml). Simultaneously with the drop in p.d., electrical resistance of the luminal brush border membrane was nearly totally eliminated, whereas transepithelial input resistance remained unaltered. Furthermore, trypan blue dye was taken up by polylysine 100,000-perfused tubular cells but not by normal cells. Expanding drop analysis (mannitol solution as a split drop) was performed as a screening test to examine if the permeability for water and sodium in the lateral paracellular pathway is altered by polylysine 100,000. No significant difference was observed in the velocity of split drop expansion between untreated and polylysine-perfused tubules. A lower concentration of polylysine 100,000 (0.1 mg/ml) showed a much less inhibitory effect on fluid absorption and on cell p.d. These observations indicate that the strong inhibition on proximal tubular fluid absorption exerted by polylysine and perhaps also by other cationic polyamino acids is due not to modification of membrane negative charges but to the lysis of tubular cells by these polycations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangham, A. D., Standish, M. M., Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238

    PubMed  Google Scholar 

  2. Boulpaep, E. L. 1970. Electrophysiological properties of proximal tubules: Importance of cellular and intercellular transport pathway.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 91. Schattauer Verlag, Stuttgart-New York

    Google Scholar 

  3. Boulpaep, E. L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Amer. J. Physiol. 222:517

    PubMed  Google Scholar 

  4. DiSant'Agnese, P. A., Talamo, R. C. 1967. Pathogenesis and physiopathology of cystic fibrosis of the pancreas.New Engl. J. Med. 277:1287, 1343, 1399

    PubMed  Google Scholar 

  5. Eylar, E. H., Madoff, M. A., Brody, O. V., Oncley, J. L. 1962. The contribution of sialic acid to the surface charge of the erythrocyte.J. Biol. Chem. 237:1992

    PubMed  Google Scholar 

  6. Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  7. Frömter, E. 1972. Progress in microelectrode techniques for kidney tubules.Yale J. Biol. Med. 45:414

    PubMed  Google Scholar 

  8. Frömter, E. 1973. Electrical studies on sugar kinetics of rat proximal tubule.Pflüg. Arch. 343:R47

    Google Scholar 

  9. Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9

    Google Scholar 

  10. Frömter, E., Rumrich, G., Ullrich, K. J. 1973. Phenomenologic description of Na+, Cl and HCO 3 absorption from proximal tubules of the rat kidney.Pflüg. Arch. 343:189

    Google Scholar 

  11. Gertz, K. H. 1963. Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere.Pflüg. Arch. 276:336

    Google Scholar 

  12. Grandchamp, A., Boulpaep, E. L. 1972. Effect of intraluminal pressure on proximal tubular sodium reabsorption. A shrinking drop micropuncture study.Yale J. Biol. Med. 45:275

    PubMed  Google Scholar 

  13. Grantham, J. J., Qualiza, P. B., Welling, L. W. 1972. Influence of serum protein on net fluid reabsorption of isolated proximal tubules.Kidney Int. 2:66

    PubMed  Google Scholar 

  14. Györy, A. Z. 1971. Reexamination of the split oil droplet method as applied to kidney tubules.Pflüg. Arch. 324:328

    Google Scholar 

  15. Györy, A. Z., Kinne, R. 1971. Energy source for transepithelial sodium transport in rat renal proximal tubules.Pflüg. Arch. 327:234

    Google Scholar 

  16. Hegel, V., Frömter, E. 1966. Erfahrung mit der Öltropfenmethode zur Lokalisation der Mikroelektrodenspitze bei transtubulären Potentialmessungen an der Rattenniere.Pflüg. Arch. 291:121

    Google Scholar 

  17. Heidrich, H. G., Kinne, R., Kinne-Saffran, E., Hanning, K. 1972. The polarity of the proximal tubule cell in rat kidney. Different surface charge for the brush border microvilli and plasma membranes from the basal infoldings.J. Cell Biol. 54:232

    PubMed  Google Scholar 

  18. Kashgarian, M., Stöckle, H., Gottschalk, C. W., Ullrich, K. J. 1963. Transtubular electrochemical potential of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (Diabetes insipidus).Pflüg. Arch. 277:89

    Google Scholar 

  19. Katchalsky, A. 1964. Polyelectrolytes and their biological interactions.Biophys. J. 4:9

    Google Scholar 

  20. Kimelberg, H. K., Papahadjopoulos, D. 1971. Interactions of basic proteins with phospholipid membranes. Binding and change in the sodium permeability of phosphatidyl serine vesicles.J. Biol. Chem. 246:1142

    PubMed  Google Scholar 

  21. Kinne, R., Schmitz, J. E., Kinne-Saffran, E. 1971. The localization of the Na+−K+-ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes.Pflüg. Arch. 329:191

    Google Scholar 

  22. Koefoed-Johnsen, V., Ussing, H. H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    PubMed  Google Scholar 

  23. Mamelak, M., Wissig, S. L., Bogoroch, R., Edelman, I. S. 1969. Physiological and morphological effects of poly-l-lysine on the toad bladder.J. Membrane Biol. 1:144

    Google Scholar 

  24. Mangos, J. A., McSherry, N. R. 1968. Studies on the mechanism of inhibition of sodium transport in cystic fibrosis of the pancreas.Pediat. Res. 2:378

    PubMed  Google Scholar 

  25. Mayhew, E., Harlos, J. P., Juliano, R. L. 1973. The effect of polycations on cell membrane stability and transport processes.J. Membrane Biol. 14:213

    Google Scholar 

  26. Montal, M. 1973. Asymmetric lipid bilayers. Response to multivalent ions.Biochim. Biophys. Acta 298:750

    PubMed  Google Scholar 

  27. Nevo, A., DeVries, A., Katchalsky, A. 1955. Interaction of basic polyamino acids with red blood cell. I. Combination of polylysine with single cells.Biochim. Biophys. Acta 17:536

    PubMed  Google Scholar 

  28. Parsons, D. F., Subjecl, J. R. 1972. The morphology of the polysaccharide coat of mammalian cells.Biochim. Biophys. Acta 265:85

    PubMed  Google Scholar 

  29. Passow, H. 1967. Steady state diffusion of non-electrolytes through epithelial brush borders.J. Theoret. Biol. 17:383

    Google Scholar 

  30. Persson, E., Agerup, B., Schnermann, J. 1972. The effect of transtubular hydrostatic and oncotic pressure differences on reabsorption net flux.In: Recent Advances in Renal Physiology.Int. Symp. on Renal Handling of Sodium, Brestenberg. H. Wirz and F. Spinelli, editors. p. 51. Kargir, Basel

    Google Scholar 

  31. Quinton, P. M., Philpott, C. W. 1973. A role for anionic sites in epithelial architecture.J. Cell Biol. 56:787

    PubMed  Google Scholar 

  32. Rambourg, A. 1971. Morphological and histological aspects of glycoproteins at the surface of animal cells.Int. Rev. Cytol. 31:57

    PubMed  Google Scholar 

  33. Sato, K. 1974. The application of semi-floating electrode to the study of cell p.d.'s of the rat proximal tubules.Pflüg. Arch. 347:R32

    Google Scholar 

  34. Sato, K. 1974. Reevaluation of some micropuncture techniques: Some of the factors which affect the rate of fluid absorption by the proximal tubule.In: Symposium on Biochemical Aspects on Renal Function. S. Angielski, editor. (In press)

  35. Sato, K., Ullrich, K. J. 1972. Effects of acid and basic polyelectrolytes on the rat proximal tubular isotonic reabsorption.Pflüg. Arch. 335:R30

    Google Scholar 

  36. Sato, K., Ullrich, K. J. 1974. Serum-induced inhibition of proximal tubular isotonic fluid absorption. I. Mechanism of inhibition.Biochim. Biophys. Acta 343:609

    PubMed  Google Scholar 

  37. Sato, K., Ullrich, K. J. 1974. Serum-induced inhibition of proximal tubular isotonic fluid absorption. II. Evidence that complement is involved.Biochim. Biophys. Acta 354:182

    PubMed  Google Scholar 

  38. Selielid, R., Selverstein, S. C., Cohen, Z. A. 1973. The effect of poly-l-lysine on the uptake of Resvirus double-stranded RNA in macrophages in vitro.J. Cell Biol. 57:484

    PubMed  Google Scholar 

  39. Solomon, S., Vanatta, J. C. 1966. Implication of phospholipids in rat tubular reabsorption.Proc. Soc. Exp. Biol., N.Y.122:1040

    Google Scholar 

  40. Terepka, A. R., Chen, P. S., Toribara, T. Y. 1970. Ultrafiltration: A conceptual model and a study of sodium, potassium, chloride and water distribution in normal human sera.Physiol. Chem. Phys. 2:59

    Google Scholar 

  41. Uhlenbruck, G., Wintzer, G., Voigtmann, R., Salfner, B., Cohen, E. 1971. Surface topography of glycoproteins in blood cell membranes.In: Glycoproteins of Blood Cells and Plasma. G. A. Jamielson and T. J. Greenwalt, editors. p. 74. Lippincott, Philadelphia-Toronto

    Google Scholar 

  42. Ullrich, K. J., Baldamus, C. A., Uhrich, E., Rumrich, G. 1969. Einfluß von Calciumionen und antidiuretischer Hormone auf den transtubulären Natrium-Transport in der Rattenniere.Pflüg. Arch. 310:369

    Google Scholar 

  43. Ullrich, K. J., Frömter, E., Baumann, K. 1969. Micropuncture and microanalysis in kidney physiology.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stampfli, editors. p. 106. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  44. Ullrich, K. J., Radtke, H. W., Rumrich, G. 1971. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney.Pflüg. Arch. 330:149

    Google Scholar 

  45. Ussing, H. H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    PubMed  Google Scholar 

  46. Whittemburg, G., Sugino, N., Solomon, A. K. 1961. Ionic permeability and electrical potential differences inNecturus kidney cells.J. Gen. Physiol. 44:689

    PubMed  Google Scholar 

  47. Wright, E. M., Diamond, J. M. 1968. Effect of pH and polyvalent cations on the selective permeability of gallbladder epithelium to monovalent ions.Biochim. Biophys. Acta 163:57

    PubMed  Google Scholar 

  48. Wunderlich, P., Persson, E., Schnermann, J., Ulfendahl, H. 1971. Hydrostatic pressure in the subcapsular interstitial space of rat and dog kidneys.Pflüg. Arch. 328:307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, K., Ullrich, K.J. Mechanism of inhibition of the proximal tubular isotonic fluid absorption by polylysine and other cationic polyamino acids. J. Membrain Biol. 21, 311–334 (1975). https://doi.org/10.1007/BF01941074

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01941074

Keywords

Navigation