The Journal of Membrane Biology

, Volume 21, Issue 1, pp 25–47 | Cite as

Determination of the resistance in series with the membranes of giant axons

  • L. Binstock
  • W. J. AdelmanJr.
  • J. P. Senft
  • H. Lecar
Article

Summary

Measurements of the resistance in series with the excitable membrane for giant axons of two different phylla (the squidLoligo pealii and the marine wormMyxicola infundibulum) were obtained. Efforts were made to take into account the errors introduced by the finite rise-time of the measuring apparatus. The series resistance value, obtained very quickly by the method described, may be used in setting the compensation potentiometer to offset this resistance in voltage-clamp measurements. Estimates of the resistance of the periaxonal tissue layer were made. Analyses were done on some of the problems involved in attempting to make an unambiguous determination of the series resistance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, W. J., Jr., Dyro, F., Senft, J. P., 1966. Internally perfused axons: Effects of two different anions on ionic conductance.Science 151:1392PubMedGoogle Scholar
  2. Adelman, W. J., Jr., Palti, Y., 1969. The effects of external potassium and long duration conditioning on the amplitude of sodium currents in giant axon of the squid,Loligo pealei.J. Gen. Physiol. 54:589PubMedGoogle Scholar
  3. Adelman, W. J., Jr., Palti, Y., Senft, J. P., 1973. Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance.J. Membrane Biol. 13:387Google Scholar
  4. Adelman, W. J., Taylor, R. E., 1964. Effects of replacement of exteral sodium chloride with sucrose on membrane currents of the squid giant axon.Biophys. J. 4:451Google Scholar
  5. Binstock, L., Goldman, L., 1969. Current and voltage clamped studies onMyxicola giant axons: Effect of tetrodotoxin.J. Gen. Physiol. 54:730PubMedGoogle Scholar
  6. Binstock, L., Goldman, L., 1971. Rectification in instantaneous potassium currentvoltage relations inMyxicola giant axons.J. Physiol. 217:517PubMedGoogle Scholar
  7. Carpenter, D. O., Hovey, M. M., Bak, A. F., 1972. Intracellular conductivity measurements in giant neurons, axons and muscle fibers. Society for Neuroscience, Second Annual Meeting (Abstr.)Google Scholar
  8. Cole, K. S., 1968. Membranes, Ions and Impulses. University of California Press, BerkeleyGoogle Scholar
  9. Cole, K. S., Moore, J. W., 1960. Ionic current measurements in the squid giant axon membrane.J. Gen. Physiol. 44:123PubMedGoogle Scholar
  10. Cuervo, L. A., Adelman, W. J., Jr., 1970. Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon.J. Gen. Physiol. 55:309PubMedGoogle Scholar
  11. Curtis, H. J., Cole, K. S., 1938. Transverse electric impedance of the squid giant axon.J. Cell. Comp. Physiol. 21:757Google Scholar
  12. Fishman, H. M., 1973. Low impedance capillary-electrode for wideband recording of membrane potential in large axons.Trans. BME 20(5):380Google Scholar
  13. FizHugh, R., Cole, K. S., 1973. Voltage and current clamp transients with membrane dielectric loss.Biophys. J. 13:1125Google Scholar
  14. Frankenhaeuser, B., Hodgkin, A. L., 1956. The after-effects of impulses in the giant nerve fibres ofLoligo.J. Physiol. 131:341PubMedGoogle Scholar
  15. Frankenhaeuser, B., Huxley, A. F., 1964. The action potential in the myelinated nerve fibre ofXenopus laevis as computed on the basis of voltage clamp data.J. Physiol. 171:302PubMedGoogle Scholar
  16. Goldman, L., Schauf, C. L., 1972. Inactivation of the sodium current inMyxicola giant axons: Evidence for coupling to the activation process.J. Gen. Physiol. 19:659Google Scholar
  17. Goldman, L., Schauf, C. L., 1973. Quantitative description of sodium and potassium currents and computer action potentials inMyxicola giant axons.J. Gen. Physiol. 61:361PubMedGoogle Scholar
  18. Hodgkin, A. L., Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500PubMedGoogle Scholar
  19. Hodgkin, A. L., Huxley, A. F., Katz, B., 1952. Measurement of current-voltage relations in the membrane of the giant axon ofLoligo.J. Physiol. 116:424PubMedGoogle Scholar
  20. Hoyt, R. C., Adelman, W. J., Jr., 1970. Sodium inactivation. Experimental tests of two models.Biophys. J. 10:610PubMedGoogle Scholar
  21. Taylor, R. E., 1965. Impedance of the squid axon membrane.J. Cell. Comp. Physiol. 66:21Google Scholar
  22. Taylor, R. E., Moore, J. W., Cole, K. S. 1960. Analysis of certain errors in squid axon voltage clamp measurements.Biophys. J. 1:161PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • L. Binstock
    • 1
    • 2
  • W. J. AdelmanJr.
    • 1
    • 2
  • J. P. Senft
    • 1
    • 2
  • H. Lecar
    • 1
    • 2
  1. 1.The Laboratory of Biophysics, IR, National Institute of Neurological Diseases and Stroke, National Institutes of Health, U.S. Public Health ServiceDepartment of Health, Education and WelfareBethesda
  2. 2.Marine Biological LaboratoryWoods Hole

Personalised recommendations