Perturbations of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with merocyanine 540

Summary

Differential scanning calorimetry of multilamellar liposomes, interacting with the optical probe Merocyanine 540, yields quantitative information about perturbances of the bilayer structure induced by this dye. At low dye: lipid ratios, the dye perturbs primarily its own microenvironment, which is laterally separated from the unmodified lipid domain and exhibits modified thermotropic properties. A further increase in the dye concentration results in a perturbance of the whole lipid bilayer. The degree of perturbance is sensitive to structural modifications in the head-group region of the lipids. It is concluded that Merocyanine 540 reports in every case, even at infinite dilution, on localized events originating from a perturbed microenvironment.

This is a preview of subscription content, access via your institution.

References

  1. Aiuchi, T., Kobatake, Y. 1979. Electrostatic interaction between Merocyanine 540 and liposomal and mitochondrial membranes.J. Membrane Biol. 45:233

    Google Scholar 

  2. Bach, D., Bursuker, I., Eibl, H., Miller, I.R. 1978. Differential scanning calorimetry of dipalmitoyllecithin analogues and of their interaction products with basic polypeptides.Biochim. Biophys. Acta 514:310

    Google Scholar 

  3. Bach, D., Chapman, D. 1979. Calorimetric studies of biomembranes and their molecular components.In: Microcalorimetry. A.E. Beezer, editor, pp. 275–309. Academic Press, New York

    Google Scholar 

  4. Cadenhead, D.A., Kellner, B.M.J., Jacobson, K., Papahadjopoulos, D. 1977. Fluorescent probes in model membranes. I: Anthroyl fatty acid derivatives in monolayers and liposomes of dipalmitoylphosphatidylcholine.Biochemistry 16:5386

    Google Scholar 

  5. Clarke, R.F.L., Nakai, S. 1972. Fluorescent studies ofk-casein with 8-anilinonaphthalene-1-sulfonate.Biochim. Biophys. Acta 257:61

    Google Scholar 

  6. Diembeck, W. 1976. Künstliche Phospholipide mit vergrößertem Phosphor-Stickstoff-Abstand. PhD. Thesis. Technische Universität, Blaunschweig, W. Germany

    Google Scholar 

  7. Diembeck, W., Eibl, H. 1979. Synthesis of phospholipid analogues. Variation of the P-N distance.Chem. Phys. Lipids 24:237

    Google Scholar 

  8. Gabel, D., Steinberg, I.Z., Katchalski, E. 1971. Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence.Biochemistry 10:4661

    Google Scholar 

  9. Hartmann, W., Galla, H.-J., Sackmann, E. 1977. Direct evidence of charge-induced lipid domain structure in model membranes.LEBS Lett. 78:169

    Google Scholar 

  10. Haynes, D.H. 1974. I-Anilino-8-naphthalenesulfonate: A fluorescent indicator of ion binding and electrostatic potential on the membrane surface.J. Membrane Biol. 17:341

    Google Scholar 

  11. Haynes, D.H., Simkowitz, P. 1977. l-Anilino-8-naphthalenesulfonate: A fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry.J. Membrane Biol. 33:63

    Google Scholar 

  12. Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations.Biochemistry 14:152

    Google Scholar 

  13. Jain, M.K., Wu, N.M. 1977. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer.J. Membrane Biol. 34:157

    Google Scholar 

  14. Lelkes, P.I., Kapitkovsky, A., Eibl, H. Miller I.R. 1979. Head-group-dependent modulation of phase transition in dipalmitoyllecithin analogs: A fluorescence depolarization study.FEBS Lett. 103:181

    Google Scholar 

  15. Lelkes, P.I., Miller, I.R. 1980. Perturbations of membrane structure by optical probes. I. Location and structural sensitivity of Merocyanine 540 bound to phospholipid membranes.J. Membrane Biol. 52:1

    Google Scholar 

  16. Lentz, B.R., Freire, E., Biltonen, R.L. 1978. Fluorescence and calorimetric studies of phase transitions in phosphatidylcholine multilayers: Kinetics of the pretransition.Biochemistry 17:4475

    Google Scholar 

  17. Marsh, D., Watts, A., Knowles, P.F. 1976. Evidence for phase boundary lipid. Permeability of tempo-choline into dimyristoyl-phosphatidylcholine vesicles at the phase transition.Biochemistry 15:3570

    Google Scholar 

  18. Radda, G.K. 1975. Fluorescence probes in membrane studies.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 4, p. 97. Plenum Press, New York

    Google Scholar 

  19. Russell, J.T., Beeler, T., Martonosi, A. 1979. Optical probe responses on sarcoplasmic reticulum. Merocyanine and oxanol dyes.J. Biol. Chem. 254:0247

    Google Scholar 

  20. Sackmann, E., Träuble, H. 1972. Studies of the crystalline-liquid phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition.J. Am. Chem. Soc. 94:4482

    Google Scholar 

  21. Sturtevant, J.M. 1974. Some applications of calorimetry in biochemistry and biology.Ann. Rev. Biophys. Bioeng 3:35

    Google Scholar 

  22. Suurkuusk, J., Lentz, B.R., Barenholz, Y., Biltonen, R.L., Thompson, T.E. 1976. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, singlelamellar dipalmitoylphosphatidylcholine vesicles.Biochemistry 15:1393

    Google Scholar 

  23. Teissié, J., Tocanne, J.F., Baudras, A. 1976. Phase transitions in phospholipid monolayers at the air-water interface: a fluorescence study.FEBS Lett. 70:123

    Google Scholar 

  24. Träuble, H., Overath, P. 1973. The structure ofEscherichia coli membranes studied by fluorescence measurements of lipid phase transitions.Biochim. Biophys. Acta 307:491

    Google Scholar 

  25. Tsong, T.Y. 1975. Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures.Biochemistry 14:5409

    Google Scholar 

  26. Vanderkooi, J., Martonosi,, A. 1969. Sarcoplasmatic reticulum. VIII. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes.Arch. Biochem. Biophys. 133:153

    Google Scholar 

  27. Waggoner, A. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317

    Google Scholar 

  28. Waggoner, A., Grinvald, A. 1977. Mechanism of rapid optical changes of potential sensitive dyes.Ann. N.Y. Acad. Sci. 303:217

    Google Scholar 

  29. West, W., Caroll, B.H. 1966. Spectral sensitivity and the mechanism of spectral sensitization.In: The Theory of the Photographic Process. (3rd ed.) T.J. James, editor. p. 233. Maemillan, New York

    Google Scholar 

  30. Witz, G., Van Duuren, B.L. 1973. Hydrophobic fluorescence probe studies with poly-l-lysine.J. Phys. Chem. 77:648

    Google Scholar 

  31. Wu, E.-S., Jacobson, K., Szoka, F., Portis, A., Jr. 1978. Lateral diffusion of a hydrophobic peptide,n-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers.Biochemistry 17:5543

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lelkes, P.I., Bach, D. & Miller, I.R. Perturbations of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with merocyanine 540. J. Membrain Biol. 54, 141–148 (1980). https://doi.org/10.1007/BF01940567

Download citation

Key words

  • Optical probes
  • lipid bilayer
  • differential scanning calorimetry
  • structural perturbance