Advertisement

Experientia

, Volume 44, Issue 5, pp 389–395 | Cite as

Mechanisms of flight steering in locusts

  • C. H. F. Rowell
Reviews

Summary

Steering in flight by locusts provides a well-studied example of the modulation of a rhythmic motor output by unpredictable inputs from outside to produce adaptive behaviour, in this case a form of locomotion. The simplest form, correctional steering, allows the animal to compensate for unintentional deviations from course. Its mechanisms are relatively well understood. The central nervous circuitry which makes this behaviour possible can be thought of as an autopilot. The entire process, from sensory input to the aerodynamic effects of changed motor outputs, is here reviewed. Intentional change of course, either spontaneous or induced by a change in the outside world, is more complex: it demands not only active steering, but also the temporary disablement of the autopilot. The mechanisms by which this could be achieved are discussed.

Key words

Flight sensory modulation feature detection interneurons sensorimotor integration locust 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Altman, J., The role of sensory inputs in insect flight motor pattern generation. Trends Neurosci.5 (1982) 257–260.CrossRefGoogle Scholar
  2. 2.
    Altman, J., Sensory inputs and the generation of the locust flight motor pattern: from the past to the future, in: Biona Report No. 2, pp. 127–136. Ed. W. Nachtigall, Fischer, Stuttgart and New York 1983.Google Scholar
  3. 3.
    Arbas, E. A., Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight. J. comp. Physiol.159 (1986) 849–857.CrossRefGoogle Scholar
  4. 4.
    Baader, A., The role of motor neurons of the abdominal muscles in flying locusts, in: New frontiers in Brain Research: Proc. 15th Göttingen Neurobiol. Conf., p. 52. Eds N. Elsner and O. Creutzfeld. G. Thieme Verlag, Stuttgart 1987.Google Scholar
  5. 5.
    Bacon, J., and Möhl, B., Activity of an identified wind interneurone in a flying locust. Nature278 (1979) 638–640.Google Scholar
  6. 6.
    Bacon, J., and Möhl, B., The tritocerebral commissure giant (TCG) wind-sensitive interneuron in the locust. I. Its activity in straight flight. J. comp. Physiol.150 (1983) 439–452.CrossRefGoogle Scholar
  7. 7.
    Bacon, J., and Tyrer, N. M., Wind interneurone input to flight motor neurones in the locustSchistocerca gregaria. Naturwissenschaften66 (1979) 116.CrossRefGoogle Scholar
  8. 8.
    Bacon, J., and Tyrer, N. M., The tritocerebral commissure giant (TCG): a bimodal interneurone in the locustSchistocerca gregaria. J. comp. Physiol.126 (1978) 317–325.CrossRefGoogle Scholar
  9. 9.
    Baker, P. S., The wing movements of flying locusts during steering behaviour. J. comp. Physiol.131 (1979) 49–58.CrossRefGoogle Scholar
  10. 10.
    Baker, P. S., Gewecke, M., and Cooter, R. J., The hatural flight of the migratory locustLocusta migratoria L. III. Wingbeat frequency, flight speed and attitude. J. comp. Physiol.141 (1981) 233–237.CrossRefGoogle Scholar
  11. 11.
    Baronetzky, E., and Möhl, B., Afferent input from the cerci on the locust flight motor, in: New Frontiers in Brain Research: Proc. 15th Göttingen Neurobiol. Conf., p. 50. Eds N. Elsner and O. Creutzfeld G. Thieme Verlag, Stuttgart 1987.Google Scholar
  12. 12.
    Camhi, J. M., Yaw correcting postural changes in locusts. J. exp. Biol.52 (1970) 519–532.Google Scholar
  13. 13.
    Camhi, J. M., Sensory control of abdomen posture in flying locusts. J. exp. Biol.52 (1970) 533–538.Google Scholar
  14. 14.
    Camhi, J. M., and Hinkle, M., Attentiveness to sensory stimuli: central control in locusts. Science175 (1972) 550–552.PubMedGoogle Scholar
  15. 15.
    Camhi, J. M., and Hinkle, M. Response modification by central flight oscillator of locusts. J. exp. Biol.60 (1974) 477–492.PubMedGoogle Scholar
  16. 16.
    Cheze, G., Contribution of l'étude des fibres nerveuses géantes deLocusta migratora migratorioides. Annls Soc. ent. fr. Ser 2,4 (1968) 207–211.Google Scholar
  17. 17.
    Cook, P. M., Observations on giant fibres of the nervous system ofLocusta migratoria. Q. J. micr. Sci.92 (1951) 297–305.Google Scholar
  18. 18.
    Cooter, R. J., Visually induced yaw movements in the flying locustSchistocerca gregaria (Forsk). J. comp. Physiol.131 (1979) 67–78.CrossRefGoogle Scholar
  19. 19.
    Delcomyn, F., Neural basis of rhythmic behavior in animals. Science210 (1980) 492–498.PubMedGoogle Scholar
  20. 20.
    Dugard, J. J., Directional change in flying locusts. J. Insect Physiol.13 (1967) 1055–1063.CrossRefGoogle Scholar
  21. 21.
    Gettrup, E., and Wilson D. M., The lift-control reaction of flying locusts. J. exp. Biol41 (1964) 183–190.PubMedGoogle Scholar
  22. 22.
    Gewecke, M., Antennen und Stirn-Scheitelhaare vonLocusta migratoria L. als Luftströmungs-Sinnesorgan bei der Flugsteuerung. J. comp. Physiol.80 (1972) 57–94.CrossRefGoogle Scholar
  23. 23.
    Gewecke, M., and Philippen, J., Control of the horizontal flightcourse by air current sense organs inLocusta migratoria. Physiol. Ent.3 (1978) 43–52.Google Scholar
  24. 24.
    Götz, K. G., Course-control, metabolism and wing interference during ultralong tethered flight inDrosophila melanogaster. J. exp. Biol.128 (1987) 35–46.Google Scholar
  25. 25.
    Goodman, L. J., Hair receptors in locusts. Hair plates on the first cervical selerites of the Orthoptera. Nature183 (1959) 1106–1107.Google Scholar
  26. 26.
    Goodman, L. J., The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust,Schistocerca gregaria. J. exp. Biol.42 (1965) 385–408.Google Scholar
  27. 27.
    Griss, C., and Rowell, C. H. F., Three descending interneurons reporting deviation from course in the locust. I. Anatomy. J. comp. Physiol.158 (1986) 765–774.CrossRefGoogle Scholar
  28. 28.
    Haskell, P. T., Function of certain prothoracic hair receptors on the desert locust. Nature183 (1959) 1107–1108.Google Scholar
  29. 29.
    Haskell, P. T., The sensory equipment of the migratory locust. Symp. zool. Soc. London, vol. 3. Sensory specialisation in response to environmental demands, pp. 1–23. Ed O. E. Lowenstein. Zoological Society, London 1960.Google Scholar
  30. 30.
    Hensler, K., Flight steering in locusts: parallel encoding of deviations from straight flight and head movements in the same deviation detector neuron and its functional significance, in: New Frontiers in Brain Research: Proc. 15th Göttingen Neurobiol. Conf., p. 51. Eds W. Elsner and O. Creutzfeld. G. Thieme Verlag, Stuttgart 1987.Google Scholar
  31. 31.
    Honegger, H.-W., Altman, J. S., Kien, J., Müller-Tautz, R., and Pollerberg, E., A comparative study of neck muscle motor neurons in a cricket and a locust. J. comp. Neurol.230 (1984) 517–535.CrossRefPubMedGoogle Scholar
  32. 32.
    Horsmann, U., Der Einfluß propriozeptiver Windmessung auf den Flug der Wanderheuschrecke und die Bedeutung descendierender Neuronen der Tritocerebralkommisur. Dissertation, Universität Köln 1985.Google Scholar
  33. 33.
    Horsmann, U., Heinzel, H. G., and Wendler, G., The phasic influence of self-generated air current modulations on the locust flight motor. J. comp. Physiol.150 (1983) 427–438.CrossRefGoogle Scholar
  34. 34.
    Jensen, M., Biology and physics of locust flight. III. The aerodynamics of flight. Phil. Trans. R. Soc. Ser. B239 (1956) 511–532.Google Scholar
  35. 35.
    Miller, L., How insects detect and avoid bats, in: Neuroethology and Behavioural Physiology, pp. 251–266. Eds F. Huber and H. Markl. Springer, Berlin, Heidelberg 1983.Google Scholar
  36. 36.
    Mittelstaedt, H., Physiologie des Gleichgewichtsinnes bei fliegenden Libellen. Z. vergl. Physiol.32 (1950) 422–463.CrossRefGoogle Scholar
  37. 37.
    Mizisin, A. P., and Josephson, R. K., Mechanical power output of locust flight muscle. J. comp. Physiol.160 (1987) 413–419.CrossRefGoogle Scholar
  38. 38.
    Möhl, B., The role of proprioception in locust flight control. J. comp. Physiol.156 (1985) 93–291.CrossRefGoogle Scholar
  39. 39.
    Möhl, B., Sense organs and the control of flight, in: Insect Flight. Eds Goldworthy and Wheeler. CRC Press (1987) in press.Google Scholar
  40. 40.
    Möhl, B., and Bacon, J., The tritocerebral commissure giant (TCG) wind-sensitive interneuron in the locust. II. Directional sensitivity and role in flight stablisation. J. comp. Physiol.150 (1983) 453–466.CrossRefGoogle Scholar
  41. 41.
    Möhl, B., and Zarnack, W., Flugsteuerung der Wanderheuschrecke durch Verschiebung der Muskelaktivität. Naturwissenschaften62 (1975) 414–442.CrossRefGoogle Scholar
  42. 42.
    Möhl, B., and Zarnack, W., Activity of the direct downstroke flight muscles ofLocusta mgratoria (L.) during steering behaviour in flight. II. Dynamics of the time shift and changes in the burst length. J. comp. Physiol.118 (1977) 235–247.CrossRefGoogle Scholar
  43. 43.
    Neumann, L., Möhl, B., and Nachtigall, W., Quick phase-specific influence of the tegula on the locust flight motor. Naturwissenschaften69 (1982) 393–394.CrossRefGoogle Scholar
  44. 44.
    Pearson, K. G., Reye, D. N., and Robertson, R. M., Phase-dependent influence of wing stretch receptors on flight rhythms in the locust. J. Neurophysiol.49 (1983) 1168–1181.PubMedGoogle Scholar
  45. 45.
    Pearson, K. G., and Wolf, H., Comparison of motor patterns in the intact and deafferented flight system of the locust. I. Electromyographic analysis. J. comp. Physiol.160 (1987) 259–268.CrossRefGoogle Scholar
  46. 46.
    Pfau, H. K., Mechanik und sensorische Kontrolle der Flügel-Pronation und-Supination, in: BIONA-report 1, pp. 61–77. Ed. W. Nachtigall, Akad. Wiss. Mainz; Fischer, Stuttgart and New York 1982.Google Scholar
  47. 47.
    Pflüger, H.-J., The large fourth abdominal intersegmental interneuron: a new type of wind-sensitive ventral cord interneuron in locusts. J. comp. Neurol.222 (1984) 343–357.CrossRefPubMedGoogle Scholar
  48. 48.
    Pringle, J. W. S., Comparative physiology of the flight motor. Adv. Insect Physiol.5 (1968) 163–227.Google Scholar
  49. 49.
    Reichert, H., and Rowell, C. H. F., Integration of non-phaselocked exteroceptive information in the control of rhythmic flight in the locust. J. Neurophysiol.53 (1985) 1201–1218.PubMedGoogle Scholar
  50. 50.
    Reichert, H., and Rowell, C. H. F., Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control. Trends Neurosci.9 (1986) 281–283.CrossRefGoogle Scholar
  51. 51.
    Robertson, M., Neuronal circuits controlling flight in the locust: central generation of the rhythm. Trends Neurosci.9 (1986) 278–280.CrossRefGoogle Scholar
  52. 52.
    Rowell, C. H. F., and Pearson, K. G., Ocellar input to the flight motor system of the locust: structure and function. J. exp. Biol.103 (1983) 265–288.Google Scholar
  53. 53.
    Rowell, C. H. F., and Reichert, H., Compensatory steering in locusts: the integration of non-phaselocked input with a rhythmic motor output, in: Insect Locomotion, pp. 175–182. Eds M. Gewecke and G. Wendler. P. Parey, Berlin, Hamburg 1985.Google Scholar
  54. 54.
    Rowell, C. H. F., and Reichert, H., How locusts fly straight, in: Feedback and Motor Control in Invertebrates and Vertebrates, pp. 337–354. Eds W. J. P. Barnes and M. H. Gladden. Cromm Helm, London 1985.Google Scholar
  55. 55.
    Rowell, C. H. F., and Reichert, H., Three descending interneurons reporting deviation from course in the locust. II. Physiology. J. comp. Physiol.158 (1986) 775–794.CrossRefGoogle Scholar
  56. 56.
    Sandeman, D. C., and Markl, H., Head movements in flies (Calliphora) produced by deflexion of the halteres. J. exp. Biol.85 (1980) 43–60.Google Scholar
  57. 57.
    Schmidt, J., and Zarnack, W., The motor pattern of locusts during visually induced rolling in long-term flight. Biol. Cybern. (1987) in press.Google Scholar
  58. 58.
    Seabrock, W. D., An electrophysiological study of the giant fiber system of the locustSchistocerca gregaria. Can. J. Zool.49 (1971) 555–560.PubMedGoogle Scholar
  59. 59.
    Shepheard, P., Musculature and innervation of the neck of the desert locust (Schistocerca gregaria Forskål). J. Morph.139 (1975) 439–464.CrossRefGoogle Scholar
  60. 60.
    Siegler, M. V. S., and Burrows, M., Non-spiking interneurones and local circuits. Trends Neurosci.3 (1980) 73–77.Google Scholar
  61. 61.
    Simmons, P. J., A lecust wind and ocellar brain neurone. J. exp. Biol.85 (1980) 281–294.Google Scholar
  62. 62.
    Simmons, P. J., Synaptic transmission between second-and third-order neurones of a locust ocellus. J. comp. Physiol.145 (1981) 256–276.CrossRefGoogle Scholar
  63. 63.
    Snodgrass, R. E., The thoracic mechanism of a grasshopper, and its antecedents. Smithson. misc. Collect82 (1929) 1–111.Google Scholar
  64. 64.
    Stevenson, P. A., and Kutsch, W., A reconsideration of the central pattern generator concept for locust flight. J. comp. Physiol.161 (1987) 115–129.CrossRefGoogle Scholar
  65. 65.
    Taylor, C. P., Contribution of compound eyes and ocelli to steering of locusts in flight. J. exp. Biol.93 (1981) 1–32.Google Scholar
  66. 66.
    Thüring, D. A., Variability of motor output during fligght steering in locusts. J. comp. Physiol.156 (1986) 655–664.Google Scholar
  67. 67.
    Thüring, D. A., The role of the angle of attack of the wing and of the wing hinge stretch receptor in flight steering in locusts: muscle stimulation experiments. in prep.Google Scholar
  68. 68.
    Waldron, I., Mechanisms for the production of the motor output pattern in flying locusts. J. exp. Biol.47 (1967) 201–212.PubMedGoogle Scholar
  69. 69.
    Waldron, I., Neural mechanisms by which controlling inputs influence motor output in the flying locust. J. exp. Biol.47 (1967) 213–228.PubMedGoogle Scholar
  70. 70.
    Weis-Fogh, T., An aerodynamic sense organ stimulating and regulating flight in locusts. Nature163 (1949) 873–874.Google Scholar
  71. 71.
    Weis-Fogh, T., and Jensen, M., Biology and physics of locust flight. I. Basic principles in insect flight. A critical review. Phil. Trans. R. Soc. Lond.239 (1956) 415–458.Google Scholar
  72. 72.
    Wilson, D. M., The central nervous control of flight in a locust. J. exp. Biol.38 (1961) 471–490.Google Scholar
  73. 73.
    Wilson, D. M., The nervous control of flight and related behaviour. Adv. Insect Physiol.5 (1968) 289–338.Google Scholar
  74. 74.
    Wilson, D. M., Inherent asymmetry and reflex modulation of the locust flight motor pattern. J. exp. Biol.48 (1968) 631–641.PubMedGoogle Scholar
  75. 75.
    Wilson, D. M., and Weis-Fogh, T., Patterned activity of coordinated motor units, studied in flying locusts. J. exp. Biol.39 (1962) 643–668.Google Scholar
  76. 76.
    Wilson, M., The functional organization of locust ocelli. J. comp. Physiol.124 (1978) 297–316.CrossRefGoogle Scholar
  77. 77.
    Wolf, H., and Pearson, K. G., Intracellular recordings in tethered flying locusts: studying the role of the CNS and periphery in flight pattern generation, in: New Frontiers in Brain Research: Proc. 15th Göttingen Neurobiol. Conf., p. 7. Eds N. Elsner and O. Creutzfeld. G. Thieme Verlag, Stuttgart 1987.Google Scholar
  78. 78.
    Zarnack, W., Untersuchungen zum Flug von Wanderheuschrecken: die Bewegungen, räumlichen Lagebeziehungen sowie Formen und Profilen von Vorder-und Hinterflügeln, in BIONA-report 1, pp. 79–102. Ed. W. Nachtigall. Akad. Wiss. Mainz; Fischer, Stuttgart and New York 1983.Google Scholar
  79. 79.
    Zarnack, W., and Möhl, B., Activity of the direct downstroke flight muscles ofLocusta migratoria (L.) during steering behaviour in flight. I. Patterns of time shift. J. comp. Physiol.118 (1977) 215–233.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • C. H. F. Rowell
    • 1
  1. 1.Zoologisches InstitutBasel(Switzerland)

Personalised recommendations