, Volume 46, Issue 7, pp 660–670 | Cite as

The endogenous regulation of mosquito reproductive behavior

  • M. J. Klowden


Most female mosquitoes require a meal of blood that provides protein for egg maturation. For reproduction to occur, two behavioral sequences are essential. One is concerned with finding a host for the blood meal and the other in finding a site on which to lay the eggs that result. Stimuli from both hosts and oviposition sites initiate the reproductive behaviors of host-seeking and pre-oviposition, respectively, that are discussed in this review. After sensory receptors perceive these stimuli, the central nervous system must integrate the information and associate it with a biologically appropriate response. Host-seeking appears to be the default behavior, expressed whenever host stimuli are present. However, if the female is successful in locating a host and ingesting blood, subsequent host-seeking is inhibited when the meal distends the abdomen above a certain threshold. Host-seeking inhibition continues during egg development as a result of a humoral mechanism even after the blood volume has been reduced by digestion. At the time when eggs are maturing and host-seeking is inhibited, pre-oviposition behavior predominates if the central nervous system receives oviposition site stimuli. This behavior is also initiated by a humoral factor. Several physiological states, including insemination, age, and nutrition, can modulate both host-seeking and pre-oviposition behaviors.

Key words

Aedes aegypti mosquito behavior host-seeking pre-oviposition reproduction olfactometer endocrinology 


  1. 1.
    Acree, F. Jr, Turner, R. B., Gouck, H. K., Beroza, M., and Smith, N., L-lactic acid: a mosquito attractant isolated from humans. Science161 (1968) 1346–1347.PubMedGoogle Scholar
  2. 2.
    Adham, F. K., Studies on laboratory oviposition behavior ofAedes caspius (Diptera: Culicidae). Acta ent. bohem.76 (1979) 99–103.Google Scholar
  3. 3.
    Andersson, I. H., and Jaenson, T. G. T., Nectar feeding by mosquitoes in Sweden, with special reference toCulex pipiens andCx torrentium. Med. vet. Ent.1 (1987) 59–64.Google Scholar
  4. 4.
    Aslam, Y., Reisen, W. K., and Aslamkhan, M., The influence of physiological age on the biting rhythm ofCulex tritaeniorhynchus Giles (Diptera: Culicidae). S.E Asian J. trop. Med. Publ. Hlth8 (1977) 364–367.Google Scholar
  5. 5.
    Bang, F. B., and Reeves, W. C., Mosquitoes and encephalitis in the Yakima Valley, Washington. III. Feeding habits ofCulex tarsalis Coq., a mosquito host of the viruses of western equine and St. Louis encephalitis. J. infect. Dis.70 (1942) 273–274.Google Scholar
  6. 6.
    Beach, R., Mosquitoes: biting behavior inhibited by ecdysone. Science205 (1979) 829–831.Google Scholar
  7. 7.
    Bentley, M. D., and Day, J. F., Chemical ecology and behavioral aspects of mosquito oviposition. A. Rev. Ent34 (1989) 401–421.Google Scholar
  8. 8.
    Bentley, M. D., McDaniel, I. N., and Davis, E. E., Studies of 4-methylcyclohexanol: anAedes triseriatus (Diptera: Culicidae) oviposition attractant. J. med. Ent.19 (1982) 589–592.Google Scholar
  9. 9.
    Bidlingmayer, W. L., The influence of environmental factors and physiological stage on flight patterns of mosquitoes taken in the vehicle aspirator and truck, suction, bait and New Jersey light traps. J. med. Ent.11 (1974) 119–146.Google Scholar
  10. 10.
    Bidlingmayer, W. L., The measurement of adult mosquito population changes-some considerations. J. Am. Mosq. Contr. Assoc.1 (1985) 328–348.Google Scholar
  11. 11.
    Bidlingmayer, W. L., and Hem, D. G., Sugar feeding by Florida mosquitoes. Mosq. News33 (1973) 535–538.Google Scholar
  12. 12.
    Bidlingmayer, W. L., and Hem, D. G., The range of visual attraction and the effect of competitive visual attractants upon mosquito (Diptera: Culicidae) flight. Bull ent. Res.70 (1980) 321–342.Google Scholar
  13. 13.
    Bishop, A., and Gilchrist, B. M., Experiments upon the feeding ofAedes aegypti through animal membranes with a view to applying this method to the chemotherapy of, malaria. Parasitology37 (1946) 85–100.Google Scholar
  14. 14.
    Boreham, P. F. L., Lenahan, J. K., Boulzaguet, R. Storey, J., Ashkar, T. S., Nambiar, R., and Matsushima, T., Studies on multiple feeding byAnopheles gambiae s.l. in a Sudan savanna area north of Nigeria. Trans. Roy. Soc. trop. Med. Hyg.73 (1979) 418–423.PubMedGoogle Scholar
  15. 15.
    Borovsky, D., Oostatic hormone inhibits biosynthesis of midgut proteolytic enzymes and egg development in mosquitoes. Archs Insect Biochem. Physiol.7 (1988) 187–210.Google Scholar
  16. 16.
    Bowen, M. F., and Davis, E. E., The effects of allatectomy and juvenile horone replacement on the development of host-seeking behaviour and lactic acid receptor sensitivity in the mosquitoAedes aegypti. Med. vet. Ent.3 (1989) 53–60.Google Scholar
  17. 17.
    Bowen, M. F., and Loess-Perez, S., A re-examination of the role of ecdysteroids in the development of host-seeking inhibition in bloodfedAedes aegypti mosquitoes, in: Host Regulated Developmental Mechanisms in Vector Arthropods, pp. 286–291. Eds D. Borovsky and A. Spielman. Univ. Florida, Vero Beach 1989.Google Scholar
  18. 18.
    Bowen, M. F., Davis, E. E., and Haggart, D. A., A behavioural and sensory analysis of host-seeking behavior in the diapausing mosquitoCulex pipiens. J. Insect Physiol.34 (1988) 805–813.Google Scholar
  19. 19.
    Briegel, H., Regulation of blood digestion in mosquitoes: effect of age of the female and the role of the neuroendocrine system inAedes aegypti. Parasitology82 (1981) 98–101.Google Scholar
  20. 20.
    Briegel, H., Manipulation of age-dependent kinetics of the induction of intestinal trypsin in the mosquitoAedes aegypti (Diptera: Culicidae). Ent. gen.8 (1983) 217–223.Google Scholar
  21. 21.
    Brown, A. W. A., Factors which attractAedes mosquitoes to humans. Proc. 10th int. Congr. Entomol., Montreal 1956,3 (1958) 757–763.Google Scholar
  22. 22.
    Brown, M. R., and Lea, A. O., FMRFamide- and adipokinetic hormone-like immunoreactivity in the nervous system of the mosquitoAedes aegypti. J. comp. Neurol.270 (1988) 606–614.PubMedGoogle Scholar
  23. 23.
    Brown, M. R., Raikhel, A. S., and Lea, A. O., Ultrastructure of midgut endocrine cells in the adult mosquito,Aedes aegypti. Tiss. Cell17 (1985) 709–721.Google Scholar
  24. 24.
    Browne, S. M., and Bennett, G. F., Response of mosquitoes (Diptera: Culicidae) to visual stimuli. J. med. Ent.18 (1981) 505–521.Google Scholar
  25. 25.
    Bruce-Chwatt, L. J., Essential Malariology. William Heinemann Medical Books Ltd, London 1980.Google Scholar
  26. 26.
    Burkot, T. R., Graves, P. M., Paru, R., and Lagog, M., Mixed blood feeding by the malaria vectors in theAnopheles punctulatus complex (Diptera: Culicidae). J. med. Ent.25 (1988) 205–213.Google Scholar
  27. 27.
    Campan, M., A study of the orientation behavior ofCalliphora vomitoria (Diptera) females towards the odor of the oviposition site. Evidence of the role of the ovary. Gen. comp. Endocr.31 (1977) 442–450.PubMedGoogle Scholar
  28. 28.
    Case, T. J., Washino, R. K., and Dunn, R. L., Diapause termination inAnopheles freeborni with juvenile hormone mimics. Entomologia exp. appl.21 (1977) 155–162.Google Scholar
  29. 29.
    Charlwood, J. D., Paru, R., Dagoro, H., and Lagog, M., Influence of moonlight and gonotrophic age on biting activity ofAnopheles farauti (Diptera: Culicidae) from Papua New Guinea. J. med. Ent.23 (1986) 132–135.Google Scholar
  30. 30.
    Chen, P. S., and Balmer, J., Secretory proteins and sex peptides of the male accessory gland inDrosophila sechellia. J. Insect Physiol.35 (1989) 759–764.Google Scholar
  31. 31.
    Chen, P. S., Stumm-Zollinger, E., and Caldelari, M., Protein metabolism ofDrosophila male accessory glands II. Speciesspecificity of secretion proteins. Insect Biochem15 (1985) 385–390.Google Scholar
  32. 32.
    Chen, P. S., Stumm-Zollinger, E., Aigaki T., Balmer, J., Bienz, M., and Böhlen, P., A male accessory gland peptide that regulates reproductive behavior of femaleD. melanogaster. Cell54 (1988) 291–298.PubMedGoogle Scholar
  33. 33.
    Christophers, S. R.,Aëdes aegypti (L.). The Yellow Fever Mosquito. Cambridge University Press 1960.Google Scholar
  34. 34.
    Clements, A. L., The Physiology of Mosquitoes. Macmillan, NY 1963.Google Scholar
  35. 35.
    Clopton, J. R., Mosquito circadian flight rhythms: differential effects of constant light. Am. J. Physiol.247 (1984) 960–967.Google Scholar
  36. 36.
    Coluzzi, M., Sabatini, A., Petrarca, V., and Di Deco, M. A., Behavioural divergences between mosquitoes with different inversion karyotypes in polymorphic populations of theAnopheles gambiae complex. Nature266 (1977) 832–833.PubMedGoogle Scholar
  37. 37.
    Corbet, P. S., Diel patterns of mosquito activity in a high arctic locality: Hazen Camp, Ellesmere Island, N.W.T. Can. Ent.98 (1966) 1238–1252.Google Scholar
  38. 38.
    Corbet, P. S., and Danks, H. V., Egg-laying habits of mosquitoes in the high arctic. Mosq. News35 (1975) 8–14.Google Scholar
  39. 39.
    Craig, G. B. Jr, Mosquitoes: female monogamy induced by a male accessory gland substance. Science156 (1967) 1499–1501.PubMedGoogle Scholar
  40. 40.
    Crans, W. J., Downing, J. D., and Slaff, M. E., Behavioral changes in the salt marsh mosquito,Aedes sollicitans, as a result of increased physiological age. Mosq. News36 (1976) 437–445.Google Scholar
  41. 41.
    Davis, E. E., Regulation of sensitivity in the peripheral chemoreceptor systems for host-seeking behaviour by a haemolymph-borne factor inAedes aegypti. J. Insect Physiol.30 (1984) 179–183.Google Scholar
  42. 42.
    Day, J. F., and Edman, J. D., Mosquito engorgement on normally defensive hosts depends on host activity patterns. J. med. Ent.21 (1984) 732–740.Google Scholar
  43. 43.
    Day, J. F., Ebert, K. M., and Edman, J. D., Feeding patterns of mosquitoes (Diptera: Culicidae) simultaneously exposed to malarious and healthy mice, including a method for separating blood meals from conspecific hosts. J. med. Ent.20 (1983) 120–127.Google Scholar
  44. 44.
    de Meillon, B., Sebastian, A., and Khan, Z. H., Cane-sugar feeding inCulex pipiens fatigans. Bull. W.H.O.36 (1967) 53–65.PubMedGoogle Scholar
  45. 45.
    Detinova, T. S., Age-grouping methods in Diptera of medical importance. W.H.O. Monograph Series No. 47 (1962) 216 pp.Google Scholar
  46. 46.
    Downes, W. L. Jr, and Dahlem, G. A., Keys to the evolution of Diptera: role of Homoptera. Envir. Ent.16 (1987) 847–854.Google Scholar
  47. 47.
    Edman, J. D., Cody, E., and Lynn, H., Blood-feeding activity of partially engorgedCulex nigripalpus (Diptera: Culicidae). Entomologica exp. appl.18 (1975) 261–268.Google Scholar
  48. 48.
    Edman, J. D., Day, J. F., and Walker, E. D., Field confirmation of laboratory observations on the differential antimosquito behavior of herons. The Condor86 (1984) 91–92.Google Scholar
  49. 49.
    Edman, J. D., and Lynn, H. C., Relationship between blood meal volume and ovarian development inCulex nigripalpus (Diptera: Culicidae). Entomologica exp. appl.18 (1975) 492–496.Google Scholar
  50. 50.
    Edman, J. D., and Kale, II, H. W., Host behavior: its influence on the feeding success of mosquitoes. Ann. ent. Soc. Am64 (1971) 513–516.Google Scholar
  51. 51.
    Edman, J. D., and Scott, T. W., Host defensive behaviour and the feeding success of mosquitoes. Insect Sci. Applic.8 (1987) 617–622.Google Scholar
  52. 52.
    Edman, J. D., Webber, L. A., and Kale, II. H. W., Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. trop. Med. Hyg.21 (1972) 487–491.PubMedGoogle Scholar
  53. 53.
    Edman, J. D., Webber, L. A., and Schmid, A. A., Effect of host defenses on the feeding pattern ofCulex nigripalpus when offered a choice of blood sources. J. Parasit.60 (1974) 874–883.PubMedGoogle Scholar
  54. 54.
    Egerter, D. E., and Anderson, J. R., Blood-feeding drive inhibition ofAedes sierrensis (Diptera: Culicidae) induced by the parasiteLambornella clarki (Cilophora: Tetrahymenidae). J. med. Ent.26 (1989) 46–54.Google Scholar
  55. 55.
    Egerter, D. E., Anderson, J. R., and Washburn, J. O., Dispersal of the parasitic ciliateLambornella clarki: implications for ciliates in the biological control of mosquitoes. Proc. natl Acad. Sci. USA83 (1986) 7335–7339.PubMedGoogle Scholar
  56. 56.
    Eilenberg, J., Abnormal egg-laying behavior of female carrot flies (Psila rosae) induced by the fungusEntomopthora muscae. Entomologica exp. appl.43 (1987) 61–65.Google Scholar
  57. 57.
    Eldridge, B. F., The effect of temperature and photoperiod on blood-feeding and ovarian development in mosquitoes of theCulex pipiens complex. Am. J. trop. Med. Hyg.17 (1968) 133–140.PubMedGoogle Scholar
  58. 58.
    Else, J. G., and Judson, C. L. Enforced egg retention and its effects on vitellogenesis in the mosquito,Aedes aegypti. J. med. Ent.9 (1972) 527–530.Google Scholar
  59. 59.
    Fay, R. W., and Perry, A. S., Laboratory studies of ovipositional preferences ofAedes aegypti. Mosq. News25 (1965) 276–281.Google Scholar
  60. 60.
    Feinsod, F. M., and Spielman, A., Nutrient-mediated juvenile hormone secretion in mosquitoes. J. Insect Physiol.26 (1980) 113–117.Google Scholar
  61. 61.
    Flanagan, T. R., and Hagedorn, H. H., Vitellogenin synthesis in the mosquito: the role of juvenile hormone in the development of responsiveness to ecdysone. Physiol. Ent.2 (1977) 173–178.Google Scholar
  62. 62.
    Foster, W. A., and Eischen, F. A., Frequency of blood-feeding in relation to sugar availability inAedes aegypti andAnopheles quadrimaculatus (Diptera: Culicidae). Ann. ent. Soc. Am.80 (1987) 103–108.Google Scholar
  63. 63.
    Fuchs, M. S., Craig, G. B. Jr, and Despommier, D. D., The protein nature of the substance inducing female monogamy inAedes aegypti. J. Insect Physiol.15 (1969) 701–709.Google Scholar
  64. 64.
    Fuchs, M. S., and Hiss, E. A., The partial purification and separation of the protein components of matrone fromAedes aegypti. J. Insect Physiol.16 (1970) 931–939.PubMedGoogle Scholar
  65. 65.
    Fuchs, M. S., and Kang, S.-H., Evidence for a naturally occurring inhibitor of oviposition inAedes aegypti. Ann. ent. Soc. Am.71 (1978) 473–475.Google Scholar
  66. 66.
    Gerold, J. L., and Laarman, J. J., Selection of some strains ofAnopheles atroparvus with different behavioural responses to contacts with DDT. Nature204 (1964) 500–501.PubMedGoogle Scholar
  67. 67.
    Gillies, M. T. The recognition of age-groups within populations ofAnopheles gambiae by the pre-gravid rate and the sporozoite rate. Ann. trop. Med. Parasit.48 (1954) 58–74.PubMedGoogle Scholar
  68. 68.
    Gillies, M. T., The pre-gravid phase of ovarian development inAnopheles funestus. Ann. trop. Med. Parasit.49 (1955) 320–325.PubMedGoogle Scholar
  69. 69.
    Gillies, M. T., and Wilkes, T. J., A study of the age-composition of populations ofAnopheles gambiae Giles andA. funestus Giles in north-eastern Tanzania. Bull. ent. Res.56 (1965) 237–262.Google Scholar
  70. 70.
    Gillies, M. T., The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull. ent. Res.70 (1980) 525–532.Google Scholar
  71. 71.
    Gould, D. J., Mount, G. A., Scanlon, J. E., Ford, H. R., and Sullivan, M. F., Ecology and control of dengue vectors on an island in the Gulf of Thailand. J. med. Ent.7 (1970) 499–508.Google Scholar
  72. 72.
    Gray, R., Meola, R., and Holman, G. M., Fat body stimulation of ecdysone synthesis inHeliothis zea. J. Insect Physiol.33 (1987) 325–331.Google Scholar
  73. 73.
    Grimstad, P. R., and DeFoliart, G. R., Nectar sources of Wisconsin mosquitoes. J. med. Ent.11 (1974) 331–341.Google Scholar
  74. 74.
    Gruetzmacher, M. C., Gilbert, L. I., and Bollenbacher, W. E., Indirect stimulation of the prothoracic glands ofManduca sexta by juvenile hormone: evidence for a fat body stimulatory factor. J. Insect Physiol.30 (1984) 771–778.Google Scholar
  75. 75.
    Gwadz, R. W., Regulation of blood meal size in the mosquito. J. Insect Physiol.15 (1969) 2039–2044.PubMedGoogle Scholar
  76. 76.
    Gwadz, R. W., and Spielman, A., Corpus allatum control of ovarian development inAedes aegypti. J. Insect Physiol.19 (1973) 1441–1448.PubMedGoogle Scholar
  77. 77.
    Haddow, A. J., Studies on the biting-habits of African mosquitos. An appraisal of methods employed, with special reference to the twenty-four-hour catch. Bull. ent. Res.45 (1954) 199–242.Google Scholar
  78. 78.
    Haddow, A. J., Observations on the biting habits of mosquitos in the forest canopy at Zika, Uganda, with special reference to the crepuscular periods. Bull. ent. Res.55 (1964) 589–608.Google Scholar
  79. 79.
    Hagedorn, H. H., O'Connor, J. D., Fuchs, M. S., Sage, B., Schlaeger, D. A., and Bohm, M. K., The ovary as a source of α-ecdysone in an adult mosquito. Proc. natl Acad. Sci. USA72 (1975) 3255–3259.PubMedGoogle Scholar
  80. 80.
    Hartberg, W. K., Observations on the mating behavior ofAedes aegypti in nature. Bull. W.H.O.45 (1971) 847–850.PubMedGoogle Scholar
  81. 81.
    Hiss, E. A., and Fuchs, M. S., The effect of matrone on oviposition in the mosquito,Aedes aegypti. J. Insect Physiol.18 (1972) 2217–2227.PubMedGoogle Scholar
  82. 82.
    Hudson, A., Factors affecting egg maturation and oviposition by autogenousAedes atropalpus. Can. Ent.102 (1970) 939–949.Google Scholar
  83. 83.
    Hudson, B. N. A., The behaviour of the female mosquito in selecting water for oviposition. J. exp. Biol.33 (1956) 478–492.Google Scholar
  84. 84.
    Jones, J. C., and Madhukar, B. V., Effects of sucrose on blood avidity in mosquitoes. J. Insect Physiol.22 (1976) 357–360.PubMedGoogle Scholar
  85. 85.
    Jones, M. D. R., Coupled oscillators controlling circadian flight activity in the mosquito,Culex pipiens quinquefasciatus. Physiol. Ent.7 (1982) 281–289.Google Scholar
  86. 86.
    Jones, M. D. R., and Gubbins, S. J., Changes in the circadian flight activity of the mosquitoAnopheles gambiae in relation to insemination, feeding and oviposition. Physiol. Ent.3 (1978) 213–220.Google Scholar
  87. 87.
    Jones, M. D. R., and Gubbins, S. J., Modification of circadian flight activity in the mosquitoAnopheles gambiae after insemination. Nature268 (1977) 731–732.PubMedGoogle Scholar
  88. 88.
    Juberthie, C., and Caussanel, C., Release of brain neurosecretory products from the neurohaemal part of the aorta during egg-laying and egg-care inLabidura riparia (Insecta, Dermoptera). J. Insect Physiol.26 (1980) 427–429.Google Scholar
  89. 89.
    Judson, C. L., Feeding and oviposition behavior in the mosquitoAedes aegypti (L.). I. Preliminary, studies of physiological control mechanisms. Biol. Bull.133 (1967) 369–377.PubMedGoogle Scholar
  90. 90.
    Kennedy, J. S., Water-finding and oviposition by captive mosquitoes, Bull. ent. Res.32 (1941) 279–301.Google Scholar
  91. 91.
    Killick-Kendrick, R., and Killick-Kendrick, M., Honeydew of aphids as a source of sugar forPhlebotomus ariasi. Med. vet. Ent.1 (1987) 297–302.Google Scholar
  92. 92.
    Klowden, M. J., Large doses of ecdysterone may inhibit mosquito behavior nonspecifically. Science208 (1980) 1062–1063.Google Scholar
  93. 93.
    Klowden, M. J., Initiation and termination of host-seeking inhibition inAedes aegypti during oocyte maturation. J. Insect Physiol.27 (1981) 799–803.Google Scholar
  94. 94.
    Klowden, M. J., Nonspecific effects of large doses of 20-hydroxyecdysone on the behavior ofAedes aegypti. Mosq. News42 (1982) 184–189.Google Scholar
  95. 95.
    Klowden, M. J., The physiological control of mosquito host-seeking behavior, in: Current Topics in Vector Research, vol. 1, pp. 93–116. Ed. K. F. Harris. Praeger Publishers, New York 1983.Google Scholar
  96. 96.
    Klowden, M. J., Effect of sugar deprivation on the host-seeking behaviour of gravidAedes aegypti mosquitoes. J. Insect Physiol.32 (1986) 479–483.Google Scholar
  97. 97.
    Klowden, M. J., Factors influencing multiple host contacts by mosquitoes during a single gonotrophic cycle. Misc. Publ. ent. Soc. Am.68 (1988) 29–36.Google Scholar
  98. 98.
    Klowden, M. J., Influence of the ovaries and fat body on the initiation and termination of pre-oviposition behavior in the mosquito,Aedes aegypti. J. Insect Physiol.35 (1989) 567–570.Google Scholar
  99. 99.
    Klowden, M. J., and Blackmer, J. L., Humoral control of pre-oviposition behavior in the mosquito,Aedes aegypti. J. Insect Physiol.33 (1987) 689–692.Google Scholar
  100. 100.
    Klowden, M. J., Blackmer, J. L., and Chambers, G. M., Effects of larval nutrition on the host-seeking behavior of adultAedes aegypti mosquitoes. J. Am. Mosq. Contr. Assoc.3 (1988) 73–75.Google Scholar
  101. 101.
    Klowden, M. J., Bowen, M. F., and Davis, E. E., Role of the fat body in the control of host-seeking behavior in the mosquito,Aedes aegypti. J. Insect Physiol.33 (1987) 643–646.Google Scholar
  102. 102.
    Klowden, M. J., and Lea, A. O., Blood meal size as a factor affecting continued host-seeking byAedes aegypti (L.). Am. J. trop. Med. Hyg.27 (1978) 827–831.PubMedGoogle Scholar
  103. 103.
    Klowden, M. J., and Lea, A. O., Humoral inhibition of host-seeking inAedes aegypti during oocyte maturation. J. Insect Physiol.25 (1979) 231–235.PubMedGoogle Scholar
  104. 104.
    Klowden, M. J., and Lea, A. O., Abdominal distention terminates subsequent host-seeking behaviour ofAedes aegypti following a blood meal. J. Insect Physiol.25 (1979) 583–585.PubMedGoogle Scholar
  105. 105.
    Klowden, M. J., and Lea, A. O., Effect of defensive host behavior on the blood meal size and feeding success of natural populations of mosquitoes (Diptera: Culicidae). J. med. Ent.15 (1979) 514–517.Google Scholar
  106. 106.
    Klowden, M. J., and Lea, A. O., Physiologically old' mosquitoes are not necessarily old physiologically. Am. J. trop. Med. Hyg.29 (1980) 1460–1464.PubMedGoogle Scholar
  107. 107.
    Klowden, M. J., and Lea, A. O., Laboratory transmission ofBrugia pahangi by nulliparousAedes aegypti (Diptera: Culicidae). J. med. Ent.18 (1981) 383–385.Google Scholar
  108. 108.
    Klowden, M. J., and Lea, A. O., Blood feeding affects age-related changes in the host-seeking behavior ofAedes aegypti (Diptera: Culicidae) during oocyte maturation. J. med. Ent.21 (1984) 274–277.Google Scholar
  109. 109.
    Laarman, J. J., The host-seeking behaviour of the malaria mosquitoAnopheles maculipennis atroparvus. Acta leidensia25 (1955) 1–144.PubMedGoogle Scholar
  110. 110.
    Lange, A. B., Orchard, I., and Barrett, F. M., Changes in haemolymph serotonin levels associated with feeding in the bloodsucking bug,Rhodnius prolixus. J. Insect Physiol.35 (1989) 393–399.Google Scholar
  111. 111.
    Laurence, B. R., and Pickett, J. A., An oviposition attractant pheromone inCulex quinquefasciatus Say (Diptera: Culicidae). Bull. ent. Res.75 (1985) 283–290.Google Scholar
  112. 112.
    Lavoipierre, M. M. J., Presence of a factor inhibiting biting inAedes aegypti. Nature182 (1958) 1567–1568.PubMedGoogle Scholar
  113. 113.
    Lea, A. O., Some relationships between environment, corpora allata, and egg maturation in aedine mosquitoes. J. Insect Physiol.9 (1963) 793–809.Google Scholar
  114. 114.
    Lea, A. O., Briegel, H., and Lea, H. M., Arrest, resorption, or maturation of oocytes inAedes aegypti: dependence on the quantity of blood and the interval between blood meals. Physiol. Ent.3 (1978) 309–316.Google Scholar
  115. 115.
    Lea, A. O., and Van Handel, E., A neurosecretory hormone-releasing factor from ovaries of mosquitoes fed blood. J. Insect, Physiol.28 (1982) 503–508.Google Scholar
  116. 116.
    Leahy, M. G., Non-specificity of the male factor enhancing egg-laying in Diptera. J. Insect Physiol.13 (1967) 1283–1292.Google Scholar
  117. 117.
    Leahy, M. G., and Craig, G. B. Jr, Accessory gland substance as a stimulant for oviposition inAedes aegypti andA. albopictus. Mosq. News25 (1965) 448–452.Google Scholar
  118. 118.
    Lounibos, L. P., Mosquito breeding and oviposition stimulant in fruit husks. Ecol. Ent.3 (1978) 299–304.Google Scholar
  119. 119.
    Macdonald, W. W.,Aedes aegypti in Malaya., II. Larval and adult biology. Ann. trop. Med. Parasit.50 (1956) 399–414.PubMedGoogle Scholar
  120. 120.
    Magnarelli, L. A., Physiological age of mosquitoes (Diptera: Culicidae) and observations on partial blood-feeding. J. med. Ent.13 (1977) 445–450.Google Scholar
  121. 121.
    Magnarelli, L. A., Blood-feeding and gonotrophic dissociation inAnopheles punctipennis (Diptera: Culicidae) prior to hibernation in Connecticut. J. med. Ent.15 (1979) 278–281.Google Scholar
  122. 122.
    Maire, A., and Langis, R., Oviposition responses ofAedes (Ochlerotatus)communis (Diptera: Culicidae) to larval holding water. J. med. Ent.22 (1985) 111–112.Google Scholar
  123. 123.
    Matsumoto, S., Brown, M. R., Crim, J. W., Vigna, S. R., and Lea, A. O., Isolation and primary structure of neuropeptides from the mosquitoAedes aegypti, immunoreactive to FMRFamide antiserum. Insect Biochem.19 (1989) 277–283.Google Scholar
  124. 124.
    McCrae, A. W. R., Age-composition of man-bitingAedes (Stegomyia)simpsoni (Theobald) (Diptera: Culicidae) in Bwamba County, Uganda. J. med. Ent.9 (1972) 545–550.Google Scholar
  125. 125.
    Meola, R., and Lea, A. O., Humoral inhibition of egg development in mosquitoes. J. med. Ent.9 (1972) 99–103.Google Scholar
  126. 126.
    Meola, R., and Readio, J., Juvenile hormone regulation of the second biting cycle inCulex pipiens. J. Insect Physiol.33 (1987) 751–754.Google Scholar
  127. 127.
    Meola, R., and Readio, J., Juvenile hormone regulation of biting behavior and egg development in mosquitoes, in: Advances in Disease Vector Research, pp. 1–24. Ed. K. F. Harris. Springer-Verlag, New York 1988.Google Scholar
  128. 128.
    Meola, R. W., and petralia, R. S., Juvenile hormone induction of biting behavior inCulex mosquitoes. Science209 (1980) 1548–1550.Google Scholar
  129. 129.
    Milby, M. M., and Reisen, W. K., Estimation of vectorial capacity: vector survivorship. Bull. Soc. Vect. Ecol.14 (1989) 47–54.Google Scholar
  130. 130.
    Mitchell, C. J., Diapause termination, gonoactivity, and differentiation of host-seeking behavior from blood-feeding behavior in hibernatingCulex tarsalis (Diptera: Culicidae). J. med. Ent.18 (1981) 386–394.Google Scholar
  131. 131.
    Mitchell, C. J., Differentiation of host-seeking behavior, from blood-feeding behavior in overwinteringCulex pipiens (Diptera: Culicidae) and observations on gonotrophic dissociation. J. med. Ent.20 (1983) 157–163.Google Scholar
  132. 132.
    Mitchell, C. J., Occurrence, biology, and physiology of diapause in overwintering mosquitoes, in: The Arboviruses: Epidemiology and Ecology, pp. 192–217. Ed. T. P. Monath. CRC Press Inc Boca Raton, Florida 1988.Google Scholar
  133. 133.
    Mitchell, C. J., Bowen, S. G., Monath, T. P., Cropp, C. B., and Kerschner, J., St. Louis encephalitis virus transmission following multiple feeding ofCulex pipiens pipiens (Diptera: Culicidae) during a single gonotrophic cycle. J. med. Ent.16 (1979) 254–258.Google Scholar
  134. 134.
    Mitchell, C. J., and Millian, K. Y. Jr, Continued host-seeking by partially engorgedCulex tarsalis (Diptera: Culicidae) collected in nature. J. med. Ent.18 (1981) 249–250.Google Scholar
  135. 135.
    Monsma, S. A., and Wolfner, M. F., Structure and expression of aDrosophila male accessory gland gene whose product resembles a peptide pheromone precursor. Genes Devel.2 (1988) 1063–1073.PubMedGoogle Scholar
  136. 136.
    Morton, D. B., and Truman, J. W., The EGPs: the eclosion hormone and cyclic GMP-regulated phosphoproteins. I. Appearance and partial characterization in the CNS ofManduca sexta. J. Neurosci.8 (1988) 1326–1337.PubMedGoogle Scholar
  137. 137.
    Muirhead-Thomson, R. C., The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication. Bull. W.H.O.22 (1960) 721–734.PubMedGoogle Scholar
  138. 138.
    Mukwaya, L. G., Genetic control of feeding preferences in the mosquitoesAedes (Stegomyia) simpsoni andaegypti. Physiol. Ent.2 (1977) 133–145.Google Scholar
  139. 139.
    Muul, I., Johnson, B. K., and Harrison, B. A., Ecological studies ofCuliseta melanura (Diptera: Culicidae) in relation to eastern and western equine encephalomyelitis virus on the eastern shore of Maryland. J. med. Ent.11 (1975) 739–748.Google Scholar
  140. 140.
    Nasci, R. S., Relationship, between adult mosquito (Diptera: Culicidae) body size and parity in field populations. Envir. Ent.15 (1986) 874–876.Google Scholar
  141. 141.
    Nasci, R. S., The size of emerging and host-seekingAedes aegypti and the relation of size to blood-feeding success in the field. J. Am. Mosq. Contr. Assoc.2 (1986) 61–62.Google Scholar
  142. 142.
    Nayar, J. K., and Sauerman, D. M. Jr, The effects of nutrition on survival and fecundity in Florida mosquitoes. Part 3. Utilization of blood and sugar for fecundity. J. med. Ent.12 (1975) 220–225.Google Scholar
  143. 143.
    Nayar, J. K., and Van Handel, E., The fuel, for sustained mosquito flight. J. Insect Physiol.17 (1971) 471–481.Google Scholar
  144. 144.
    Nelson, M. J., Self, L. S., Pant, C. P., and Usman S., Diurnal periodicity of attraction to human bait ofaedes aegypti (Diptera: Culicidae) in Jakarta, Indonesia. J. med. Ent.14 (1978) 504–510.Google Scholar
  145. 145.
    Nelson, R. L., and Milby, M. M., Autogeny and blood-feeding byCulex tarsalis (Diptera: Culicidae) and the interval between oviposition and feeding. Can. Ent.114 (1982) 515–521.Google Scholar
  146. 146.
    Nijhout, H. F., and Carrow, G. M., Diuresis after a bloodmeal in femaleAnopheles freeborni. J. Insect Physiol.24 (1978) 293–298.Google Scholar
  147. 147.
    O'Gower, A. K., Environmental stimuli, and the oviposition behaviour ofAedes aegypti var.queenslandis Theobald (Diptera: Culicidae). Anim. Behav.11 (1963) 189–197.Google Scholar
  148. 148.
    O'Meara, G. F., and Evans, D. G., The influence of mating on autogenous egg development in the mosquito.,Aedes taeniorhynchus. J. Insect Physiol.22 (1976) 613–617.PubMedGoogle Scholar
  149. 149.
    Ramalingham, S., and Craig, G. B., Functions of the male accessory gland secretions ofAedes mosquitoes (Diptera: Culicidae): transplantation studies. Can. Ent.108 (1976) 955–960.Google Scholar
  150. 150.
    Reisen, W. K., and Mahmood, F.,Anopheles culicifacies Giles: some relationships among oviposition, refeeding and survivorship. Mosq. News39 (1979) 374–381.Google Scholar
  151. 151.
    Rossignol, P., Spielman, A., and Jacobs, M. S., Rough endoplasmic reticulum in midgut cells of mosquitoes (Diptera: Culicidae): aggregation stimulated by juvenile hormone. J. med. Ent.19 (1982) 719–721.Google Scholar
  152. 152.
    Roth, L. M., Loci of sensory end-organs used by mosquitoes (Aedes aegypti (L.) andAnopheles quadrimaculatus Say) in receiving host stimuli. Ann. ent. Soc. Am.44 (1951) 59–74.Google Scholar
  153. 153.
    Rowland, M., Changes in the circadian flight activity of the mosquitoAnopheles stephensi associated with insemination, bloodfeeding, oviposition and nocturnal flight intensity. Physiol. Ent.14 (1989) 77–84.Google Scholar
  154. 154.
    Rowland, M., and Boersma, E., Changes in the spontaneous flight activity of the mosquitoAnopheles stephensi by parasitization with the rodent malariaPlasmodium yoelii. Parasitology97 (1988) 221–227.PubMedGoogle Scholar
  155. 155.
    Rowland, M. W., and Lindsay, S. L., The circadian flight activity ofAedes aegypti parasitized with the filarial nematodeBrugia pahangi. Physiol. Ent.11 (1986) 325–334.Google Scholar
  156. 156.
    Russo, R., Substrate texture as an oviposition stimulus forAedes vexans (Diptera: Culicidae). J. med. Ent.15 (1978) 17–20.Google Scholar
  157. 157.
    Rutledge, L. C., Khan, A. A., Skidmore, D. L., and Maibach, H. I., Genetic transmission of host-seeking behavior in colonizedAedes aegypti (L.). Mosq. News35 (1975) 189–194.Google Scholar
  158. 158.
    Sandburg, L. L. and Larsen, J. R., Effect of photoperiod and temperature on ovarian development inCulex pipiens pipiens. J. Insect Physiol.19 (1973) 1173–1190.PubMedGoogle Scholar
  159. 159.
    Scheller, R. H., Jackson, J. F., McAllister, L. B., Rothman, B. S., Mayeri, E., and Axel, R., A single gene encodes multiple neuropeptides mediating a sterotyped behavior. Cell32 (1983) 7–22.PubMedGoogle Scholar
  160. 160.
    Schreck, C. E., Smith, N., Carlson, D. A., Price, G. D., Haile, D., and Godwin, D. R., A material isolated from human hands that attracts female mosquitoes. J. chem. Ecol.8 (1981) 429–438.Google Scholar
  161. 161.
    Senior White, R. A., On the evening biting activity of three neotropicalAnopheles in Trinidad, British West Indies. Bull. ent. Res.44 (1953) 451–460.Google Scholar
  162. 162.
    Shapiro, J. P., and Hagedorn, H. H., Juvenile hormone and the development of ovarian responsiveness to a brain hormone in the mosquito,Aedes aegypti. Gen. comp. Endocr.46 (1982) 176–183.PubMedGoogle Scholar
  163. 163.
    Shroyer, D. A., and Sanders, D. P., The influence of carbohydrate-feeding and insemination on oviposition of an Indiana strain ofAedes vexans (Diptera: Culicidae). J. med. Ent.14 (1977) 121–127.Google Scholar
  164. 164.
    Spielman, A., Effect of synthetic juvenile hormone on ovarian diapause ofCulex pipiens mosquitoes. J. med. Ent.11 (1974) 223–225.Google Scholar
  165. 165.
    Spielman, A., and Wong, J., Environmental control of ovarian diapause pause inCulex pipiens mosquitoes. Ann. ent. Soc. Am.66 (1973) 905–907.Google Scholar
  166. 166.
    Standfast, H. A., A miniature light trap which automatically segregates the catch into hourly samples. Mosq. News32 (1965) 48–53.Google Scholar
  167. 167.
    Stobbart, R. H., The control of the diuresis following a blood meal in females of the yellow fever mosquitoAedes aegypti (L.). J. exp. Biol.69 (1977) 53–85.PubMedGoogle Scholar
  168. 168.
    Sun, W. K. C., The seasonal succession of mosquitoes in Taiwan. J. med. Ent.1 (1964) 277–284.Google Scholar
  169. 169.
    Taylor, B., and Jones, M. D. R., The circadian rhythm of flight activity in the mosquitoAedes aegypti (L.): the phase setting effects of light-on and light-off J. exp. Biol.51 (1969) 59–70.PubMedGoogle Scholar
  170. 170.
    Taylor, D. M., Bennett, G. F., and Lewis, D. J., Observations on the host-seeking activity of some Culicidae in the Tantramar marshes, New Brunswick. J. med. Ent.15 (1979) 134–137.Google Scholar
  171. 171.
    Terzi, G., Truman, J. W., and Reynolds, S. E., Purification and characterization of eclosion hormone from the moth,Manduca sexta. Insect Biochem.18 (1988) 701–707.Google Scholar
  172. 172.
    Terzian, L. A., and Stahler, N., The effects of larval population density on some laboratory characteristics ofAnopheles quadrimaculatus Say. J. Parasit.35 (1949) 487–495.Google Scholar
  173. 173.
    Trpis, M., and Hausermann, W., Genetics of house-entering behaviour in East African populations ofAedes aegypti (L.) (Diptera: Culicidae) and its relevance to speciation. Bull. ent. Res.68 (1978) 521–532.Google Scholar
  174. 174.
    Truman, J.W., Development and hormonal release of adult behavior patterns in silk moths. J. comp. Physiol.107 (1976) 39–48.Google Scholar
  175. 175.
    Truman, J.W., and Morton, D.B., The mechanism of steroid regulation of peptide action on the insect nervous system, in: Molecular Entomology, pp. 165–177. Ed. J.H. Law. Alan R. Liss, Inc., New York 1987.Google Scholar
  176. 176.
    Truman, J.W., and Riddiford, L.M., Neuroendocrine control of ecdysis in silkmoths. Science167 (1970) 1624–1626.Google Scholar
  177. 177.
    Tyndale-Biscoe, M., Effects of ovarian condition on nesting behaviour in a brood-caring dung beetle,Copris diversus (Waterhouse (Coleoptera: Scarabaeidae). Bull. ent. Res.73 (1983) 45–52.Google Scholar
  178. 178.
    Wada, Y., Effect of larval density on the development ofAedes aegypti (L.) and the size of adults. Quaest. Ent.1 (1965) 223–249.Google Scholar
  179. 179.
    Wallis, R.C., and Lang, C., Egg formation and oviposition in bloodfedAedes aegypti (L.). Mosq. News16 (1956) 283–286.Google Scholar
  180. 180.
    Washino, R.K., The physiological ecology of gonotrophic dissociation and related phenomena in mosquitoes. J. med. Ent.13 (1977) 381–388.Google Scholar
  181. 181.
    Watson, R.D., Williams, T.K., and Bollenbacher, W.E., Regulation of ecdysone biosynthesis in the tobacco hornworm,Manduca sexta: Titre of the haemolymph stimulatory factor during the last larval instar. J. exp. Biol.128 (1987) 159–173.PubMedGoogle Scholar
  182. 182.
    Williams, R.W., Hagan, N.K.B., Berger, A., and Despommier, D.D., An improved assay technique for matrone, a mosquito pheromone, and its application in ultrafiltration experiments. J. Insect Physiol.24 (1978) 127–132.PubMedGoogle Scholar
  183. 183.
    Woke, P.A., Ally, M.S., and Rosenberger, C.R. Jr, The numbers of eggs developed related to the quantities of human blood ingested inAedes aegypti (L.)(Diptera: Culicidae). Ann. ent. Soc. Am.49 (1956) 435–441.Google Scholar
  184. 184.
    Young, A.D.M., and Downe, A.E.R., Male accessory gland substances and the control of sexual receptivity in femaleCulex tarsalis. Physiol. Ent.12 (1987) 233–239.Google Scholar
  185. 185.
    Young, A.D.M., and Downe, A.E.R., The action of male accessory gland fluids in the control of sexual receptivity inCulex tarsalis Coq., in: Host Regulated Developmental Mechanisms in Vector Arthropods, pp. 206–211. Eds D. Borovsky and A. Spielman. University of Florida, Vero Beach 1989.Google Scholar
  186. 186.
    Zóltowski, Z., Stejgwillo-Laudanska, B., and Kazmierczuk, J., Physiological and behavioural interpretation of the presence of microtraces of mixed host blood in alimentary tracts of mosquitos of the genusAëdes Meigen, 1818 (Diptera: Culicidae). Acta parasit. pol.25 (1978) 351–357.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1990

Authors and Affiliations

  • M. J. Klowden
    • 1
  1. 1.Division of EntomologyUniversity of IdahoMoscow(USA)

Personalised recommendations