, Volume 44, Issue 11–12, pp 1030–1032 | Cite as

Flux of singlet oxygen from leaves of phototoxic plants

  • M. R. Berenbaum
  • R. A. Larson
Short Communications


Detached leaves ofZanthoxylum americanum andPastinaca sativa, plants known to produce phototoxins, generate singlet oxygen when illuminated by a xenon arc lamp that simulates sunlight. Other species tested did not produce detectable amounts of singlet oxygen. Calculations of the rate of production of singlet oxygen indicate a flux of up to 4×1012 molecules cm−1s−1. This level is sufficiently high to induce damage in the cells of organisms near the leaf surface. Photodynamic action may thus provide for plants an evolutionary advantage in the form of preemptive protection against predators without tissue loss.

Key words

Phototoxicity singlet oxygen Pastinaca sativa Zanthoxylum americanum plant defense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Downum, K. R., and E. Rodriguez, J. chem. Ecol.12 (1986) 823.CrossRefGoogle Scholar
  2. 2.
    Berenbaum, M. R., Science201 (1978) 532.Google Scholar
  3. 3.
    Champagne, D. E., Arnason, J. T., Philogène, B. J. R., Moran, P., and Lam, J., J. chem. Ecol.12 (1986) 835.CrossRefGoogle Scholar
  4. 4.
    Ashkenazy, D., Kashman, Y., Nyska, A., and Friedman, J., J. chem. Ecol.11 (1985) 231.CrossRefGoogle Scholar
  5. 5.
    Downum, K. R., and Nemec, S., Light Activated Pesticides, Eds J. Heitz and K. R. Downum. Am. chem. Soc. sympos. Ser.339 (1987) 281.Google Scholar
  6. 6.
    Larson, R. A., CRC Crit. Rev. envir. Control8 (1978) 197.Google Scholar
  7. 7.
    Spikes, J. D., and Straight, R. C., in: Light Activated Pesticides, Eds J. Heitz and K. R. Downum. Am. chem. Soc. Sympos. Ser.339 (1987) 98.Google Scholar
  8. 8.
    Midden, W. R., and Wang, S. Y., J. Am. chem. Soc.109 (1983) 4129).CrossRefGoogle Scholar
  9. 9.
    Haag, W. R., and Hoigné, J., Chemosphere13 (1984) 631.CrossRefGoogle Scholar
  10. 10.
    Zangerl, A. R., and Berenbaum, M. R., Ecology68 (1987) 516.Google Scholar
  11. 11.
    Waterman, P. G., Biochem. systemat. Ecol.3 (1972) 149.CrossRefGoogle Scholar
  12. 12.
    Murray, R. D. H., Mendez, J., and Brown, S. A., The Natural Coumarins. Wiley, New York 1982.Google Scholar
  13. 13.
    Poppe, W., and Grossweiner, L., Photochem. Photobiol.22 (1975) 217.PubMedGoogle Scholar
  14. 14.
    Chae, K. H., and Ham, H. S., Bull.Korean chem. Soc.7 (1986) 478.Google Scholar
  15. 15.
    Krishna, C. M., Lion, Y., and Riesz, P., Photochem. Photobiol.45 (1987) 1.PubMedGoogle Scholar
  16. 16.
    Knox, J. P., and Dodge, A. D., Phytochemistry24 (1985) 889.CrossRefGoogle Scholar
  17. 17.
    Kagan, J., and Chan, G., Experientia39 (1983) 402.Google Scholar
  18. 18.
    Kagan, J., Kolyvas, C. P., and Lam, J., Experientia40 (1984) 1396.PubMedGoogle Scholar
  19. 19.
    Eisenberg, W. C., Taylor, K., and Schiff, L. J., Experientia40 (1984) 514.PubMedGoogle Scholar
  20. 20.
    Schiff, L. J., Eisenberg, W. C., and Taylor, K., Mutat. Res.142 (1985) 41.PubMedGoogle Scholar
  21. 21.
    Dahl, T. A., Midden, W. R., and Hartmann, P. E., Photochem. Photobiol.46 (1987) 345.PubMedGoogle Scholar
  22. 22.
    Towers, G. H. N., and Champagne, D. E., in: Light Activated Pesticides, Eds J. heitz and K. R. Downum. Am. chem. Soc. Sympos. Ser.339 (1987) 231.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1988

Authors and Affiliations

  • M. R. Berenbaum
    • 1
  • R. A. Larson
    • 2
  1. 1.Department of EntomologyUniversity of IllinoisUrbanaUSA
  2. 2.Institute for Environmental StudiesUniversity of IllinoisUrbanaUSA

Personalised recommendations