, Volume 46, Issue 6, pp 611–616 | Cite as

Glycolipid transfer protein and intracellular traffic of glucosylceramide

  • T. Sasaki


Glycolipid transfer protein (GL-TP), a nonglycosylated protein with a molecular weight of 22,000 K, has been purified from pig brain. The protein transfers, by a carrier mechanism, glycolipids with a β-glucosyl or β-galactosyl residue directly linked to either ceramide or diacylglycerol. GL-TP appears to be present in most animal cells, and evidence has been obtained which indicates that it is a cytoplasmic protein. Little is known about the function of GL-TP. Current evidence indicates that glycosphingolipid glycosylation occurs at the luminal side of the Golgi apparatus, except for the glucosylation of ceramide, which has been shown to occur at the cytoplasmic side of the Golgi or endoplasmic membrane. It appears most likely that GL-TP participates in the intracellular traffic of glucosylceramide.

Key words

Glycosphingolipid topography of glycolipid glycosylation the Golgi apparatus glucosylceramide monensin glycolipid transfer protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, A., and Sasaki, T., Purification and some properties of the glycolipid transfer protein from pig brain. J. biol. Chem.260 (1985) 11231–11239.Google Scholar
  2. 2.
    Abe, A., and Sasaki, T., Formation of an intramolecular disulfide bond of glycolipid transfer protein. Biochim. biophys. Acta985 (1989) 45–50.Google Scholar
  3. 3.
    Abe, A., and Sasaki, T., Sulfhydryl groups in glycolipid transfer protein: formation of an intramolecular disulfide bond and oligomers by Cu2+-catalyzed oxidation. Biochim. biophys. Acta,985 (1989) 38–44.Google Scholar
  4. 4.
    Abe, A., Yamada, K., and Sasaki, T., A protein purified from pig brain accelerates the intermembranous translocation of mono- and dihexosylceramides, but not the translocation of phospholipids. Biochem. biophys. Res. Commun.104 (1982) 1386–1393.Google Scholar
  5. 5.
    Abe, A., Yamada, K., Sakagami, T., and Sasaki, T., A fluorimetric determination of the activity of glycolipid transfer protein and some properties of the protein purified from pig brain. Biochim. biophys. Acta778 (1984) 239–244.Google Scholar
  6. 6.
    Akeroyd, R., Moonen, P., Westerman, J., Puyk, W. C., and Wirtz, K. W. A., The complete primary structure of the phosphatidylcholinetransfer protein from bovine liver: isolation and characterization of the cyanogen bromide peptides. Eur. J. Biochem.114 (1981) 385–391.Google Scholar
  7. 7.
    Alpers, D. H., Strauss, A. W., Ockner, R. K., Bass, N. M., and Gordon, J. I., Cloning of a cDNA encoding rat intestinal fatty acid binding protein. Proc. natl Acad. Sci. USA81 (1984) 313–317.Google Scholar
  8. 8.
    Briles, E. B., Li, E., and Kornfeld, S., Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J. biol. Chem.252 (1977) 1107–1116.Google Scholar
  9. 9.
    Brown, R. E., Stephenson, F. A., Markello, T., Barenholz, Y., and Thompson, T. E., Properties of a specific glycolipid transfer protein from bovine brain. Chem. Phys. Lipids38 (1985) 79–93.Google Scholar
  10. 10.
    Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., The anion transport system of the red blood cell; the role of membrane protein evaluated by the use of ‘probes’. Biochim. biophys. Acta515 (1978) 239–302.Google Scholar
  11. 11.
    Capasso, J. M., and Hirschberg, C. B., Effect of atractylosides, palmitoyl coenzyme A, and anion transport inhibitors on translocation of nucleotide sugars and nucleotide sulfate into Golgi vesicles. J. biol. Chem.259 (1984) 4263–4266.Google Scholar
  12. 12.
    Conzelmann, E., Burg, J., Stephan, G., and Sandhoff, K., Complexing of glycolipids and their transfer between membranes by the activator protein for degradation of lysosomal ganglioside GM2. Eur. J. Biochem.123 (1982) 455–464.Google Scholar
  13. 13.
    Coste, H., Martel, M. B., Azzar, G., and Got, R., UDP-glucoseceramide glycosyltransferase from porcine submaxillary glands is associated with the Golgi apparatus. Biochim. biophys. Acta814 (1985) 1–7.Google Scholar
  14. 14.
    Coste, H., Martel, M. B., and Got, R., Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim. biophys. Acta858 (1986) 6–12.Google Scholar
  15. 15.
    Deutscher, S. L., and Hirschberg, C. B., Mechanism of galactosylation in the Golgi apparatus: a Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes. J. biol. Chem.261 (1986) 96–100.Google Scholar
  16. 16.
    Deutscher, S. L., Nuwayhid, N., Stanley, P., Briles, E. I. B., and Hirschberg, C. B., Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell39 (1984) 295–299.Google Scholar
  17. 17.
    Dower, S., Miller-Podraza, H., and Fishman, P. H., Translocation of newly synthesized gangliosides to the cell surface. Biochemistry21 (1982) 3265–3270.Google Scholar
  18. 18.
    Dunphy, W. G., Brands, R., Rothman, J. E., Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell40 (1985) 463–472.Google Scholar
  19. 19.
    Elbein, A. D., Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. A. Rev. Biochem.56 (1987) 497–534.Google Scholar
  20. 20.
    Eppler, C. M., Morré, D. J., and Keenan, T. W., Ganglioside biosynthesis in rat liver: characterization of cytidine-5′-monophospho-N-acetylneuraminic acid: hematoside (GM3) sialyl transferase. Biochim. biophys. Acta619 (1980) 318–331.Google Scholar
  21. 21.
    Farquhar, M. G., Progress in unraveling pathways of Golgi traffic. A. Rev. Cell Biol.1 (1985) 447–488.Google Scholar
  22. 22.
    Gammon, C. M., Vaswani, K. K., and Ledeen, R. W., Isolation of two glycolipid transfer proteins from bovine brain: reactivity toward gangliosides and neutral glycosphingolipids. Biochemistry26 (1987) 6239–6243.Google Scholar
  23. 23.
    Gordon, J. I., Alpers, D. H., Ockner, R. K., and Strauss, A. W., The nucleotide sequence of rat liver fatty acid binding protein mRNA. J. biol. Chem.258 (1983) 3356–3363.Google Scholar
  24. 24.
    Haselbeck, A., and Tanner, W., Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. Proc. natl Acad. Sci. USA79 (1982) 1520–1524.Google Scholar
  25. 25.
    Keenan, T. W., Morre, D. J., and Basu, S., Ganglioside biosynthesis: concentration of glycosphingolipid glycosyltransferases in Golgi apparatus from rat liver. J. biol. Chem.249 (1974) 310–315.Google Scholar
  26. 26.
    Li, S.-C., Hirabayashi, Y., and Li, Y.-T., A protein activator for the enzymic hydrolysis of GM2 ganglioside. J. biol. Chem.256 (1981) 6234–6240.Google Scholar
  27. 27.
    Lipsky, N. G., and Pagano, R. E., Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc. natl Acad. Sci. USA80 (1983) 2608–2612.Google Scholar
  28. 28.
    Lipsky, N. G., and Pagano, R. E., Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cell Biol.100 (1985) 27–34.Google Scholar
  29. 29.
    Metz, R. J., and Radin, N. S., Glucosylceramide uptake protein from spleen cytosol. J. biol. Chem.255 (1980) 4463–4467.Google Scholar
  30. 30.
    Metz, R. J., and Radin, N. S., Purification and properties of a cerebroside transfer protein. J. biol. Chem.257 (1982) 12901–12907.Google Scholar
  31. 31.
    Miller-Podraza, H., Bradley, R. M., and Fishman, P. H., Biosynthesis and localization of gangliosides in cultured cells. Biochemistry21 (1982) 3260–3265.Google Scholar
  32. 32.
    Miller-Podraza, H., and Fishman, P. H., Effect of drugs and temperature on biosynthesis and transport of glycosphingolipids in cultured neurotumor cells. Biochim. biophys. Acta804 (1984) 44–51.Google Scholar
  33. 33.
    Morré, D. J., Kartenbeck, J., and Franke, W. W., Membrane flow and interconversions among endomembranes. Biochim. biophys. Acta559 (1979) 71–152.Google Scholar
  34. 34.
    Nakano, T., Sandhoff, K., Stümper, J., Christomanou, H., and Suzuki, K., Structure of full-length cDNA coding for sulfatide activator, a co-β-glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J. Biochem.105 (1989) 152–154.Google Scholar
  35. 35.
    Pacuszka, T., Duffard, R. O., Nishimura, R. N., Brady, R. O., and Fishman, P. H., Biosynthesis of bovine thyroid gangliosides. J. biol. Chem.253 (1978) 5839–5846.Google Scholar
  36. 36.
    Radin, N. S., and Metz, R. J., Cerebroside transfer protein. Meth. Enzymol.98 (1983) 613–622.Google Scholar
  37. 37.
    Richardson, C. L., Keenan, T. W., and Morré, D. J., Ganglioside biosynthesis: characterization of CMP-N-acetylneuraminic acid: lactosylceramide sialyltransferase in Golgi apparatus from rat liver. Biochim. biophys. Acta488 (1977) 88–96.Google Scholar
  38. 38.
    Roth, J., and Berger, E. G., Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J. Cell Biol.93 (1982) 223–229.Google Scholar
  39. 39.
    Saito, M., Saito, M., and Rosenberg, A., Action of monensin, a monovalent cationophore, on cultured human fibroblasts: evidence that it induces high cellular accumulation of glucosyl- and lactosylceramide (gluco-and lactocerebroside). Biochemistry23 (1984) 1043–1046.Google Scholar
  40. 40.
    Sasaki, T., and Demel, R. A., Net mass transfer of galactosylceramide facilitated by glycolipid transfer protein from pig brain: a monolayer study. Biochemistry24 (1985) 1079–1083.Google Scholar
  41. 41.
    Sasaki, T., and Abe, A., Glycolipid transfer protein from pig brain. Meth. Enzymol.179 (1990) in press.Google Scholar
  42. 42.
    Siegrist, H. P., Burkart, T., Wiesmann, U. N., Herschkowitz, N. N., and Spycher, M. A., Ceramide-galactosyltransferase and cerebrosidesulphotransferase localization in Golgi membranes isolated by a continuous sucrose gradient of mouse brain microsomes. J. Neurochem.33 (1979) 497–504.Google Scholar
  43. 43.
    Snider, M. D., Sultzman, L. A., and Robbins, P. W., Transmembrane location of oligosaccharide-lipid synthesis in microsomal vesicles. Cell21 (1980) 385–392.Google Scholar
  44. 44.
    Spiro, M. J., and Spiro, R. G., Effect of anion-specific inhibitors on the utilization of sugar nucleotides forN-linked carbohydrate unit assembly by thyroid endoplasmic reticulum vesicles. J. biol. Chem.260 (1985) 5808–5815.Google Scholar
  45. 45.
    Stanley, P., Altered glycolipids of CHO cells resistant to wheat germ agglutinin. ACS Symp. Ser.128 (1980) 213–221.Google Scholar
  46. 46.
    Stanley, P., Selection of lectin-resistant mutants of animal cells. Meth. Enzymol.96 (1983) 157–184.Google Scholar
  47. 47.
    Stanley, P., Membrane mutants of animal cells: rapid identification of those with a primary defect in glycosylation. Molec. cell. Biol.5 (1985) 923–929.Google Scholar
  48. 48.
    Suzuki, Y., Ecker, C. P., and Blough, H. A., Enzymatic glucosylation of dolichol monophosphate and transfer of glucose from isolated dolichyl-D-glucosyl phosphate to ceramides by BHK-21 cell microsomes. Eur. J. Biochem.143 (1984) 447–453.Google Scholar
  49. 49.
    Westerman, J., and Wirtz, K. W. A., The primary structure of the nonspecific lipid transfer protein (sterol carrier protein 2) from bovine liver. Biochem. biophys. Res. Commun.127 (1985) 333–338.Google Scholar
  50. 50.
    Wilkinson, F. E., Morré, D. J., and Keenan, T. W., Ganglioside biosynthesis: characterization of uridine diphosphate galactose: GM2 galactosyltransferase in Golgi apparatus from rat liver. J. Lipid Res.17 (1976) 146–153.Google Scholar
  51. 51.
    Wolosin, J. M., A procedure for membrane-protein reconstitution and the functional reconstitution of the anion transport system of the human-erythrocyte membrane. Biochem. J.189 (1980) 35–44.Google Scholar
  52. 52.
    Wong, M., Brown, R. E., Barenholz, Y., and Thompson, T. E., Glycolipid transfer protein from bovine brain. Biochemistry23 (1984) 6498–6505.Google Scholar
  53. 53.
    Yamada, K., and Sasaki, T., A rat brain cytosol protein which accelerates the translocation of galactosylceramide, lactosylceramide and glucosylceramide between membranes. Biochim. biophys. Acta687 (1982) 195–203.Google Scholar
  54. 54.
    Yamada, K., and Sasaki, T., Rat liver glycolipid transfer protein: a protein which facilitates the translocation of mono- and dihexosylceramides from donor to acceptor liposomes. J. Biochem.92 (1982) 457–464.Google Scholar
  55. 55.
    Yamada, K., Abe, A., and Sasaki, T., Specificity of the glycolipid transfer protein from pig brain. J. biol. Chem.260 (1985) 4615–4621.Google Scholar
  56. 56.
    Yamada, K., Abe, A., and Sasaki, T., Glycolipid transfer protein from pig brain transfers glycolipids with β-linked sugars but not with α-linked sugars at the sugar-lipid linkage. Biochim. biophys. Acta879 (1986) 345–349.Google Scholar
  57. 57.
    Yusuf, H. K. M., Pohlentz, G., and Sandhoff, K., Tunicamycin inhibits ganglioside biosynthesis in rat liver Golgi apparatus by blocking sugar nucleotide transport across the membrane vesicles. Proc. natl Acad. Sci. USA80 (1983a) 7075–7079.Google Scholar
  58. 58.
    Yusuf, H. K. M., Pohlentz, G., Schwarzmann, G., and Sandhoff, K., Ganglioside biosynthesis in Golgi apparatus of rat liver: stimulation by phosphatidylglycerol and inhibition by tunicamycin. Eur. J. Biochem.134 (1983b) 47–54.Google Scholar
  59. 59.
    Yusuf, H. K. M., Pohlentz, G., and Sandhoff, K., Ganglioside biosynthesis in Golgi apparatus: new perspectives on its mechanism. J. Neurosci. Res.12 (1984) 161–178.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • T. Sasaki
    • 1
  1. 1.Department of Biochemistry, Cancer Research InstituteSapporo Medical CollegeSapporo(Japan)

Personalised recommendations