, Volume 46, Issue 9, pp 940–947 | Cite as

Cell lineage and cell migration in the developing cerebral cortex

  • Ch. Walsh
  • C. L. Cepko
Multi-author Review


Modern techniques which trace lineages of individual progenitor cells have provided some clues about the processes that determine cell fate in the brain, and have also given us some information about migratory patterns of clonally related cells. In many parts of the central nervous system, progenitors are multipotent; single clones can contain multiple neuronal types or even mixtures of neurons and glia. In addition, one can observe a wide distribution in clone size, even when marking is done in a narrow time window. This suggests that progenitor cells may be fairly plastic and responsive to environmental signals. In the developing cortex, clonally related cells are initially grouped near each other, as in the retina and tectum. However, the subsequent migration of these cells from the ventricular zone to the cortex along glial fibers is accompanied by a progressive dispersion of clonally related neurons.

Key words

Cell lineage cerebral cortex neuronal development glial development radial glia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angevine, J. B., and Sidman, R. L., Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature192 (1961) 766–768.PubMedGoogle Scholar
  2. 2.
    Austin, C., and Cepko, C., Lineage analysis of the mouse cerebral cortex using retrovirus vectors. Soc. Neurosci. Abstr.15 (1989) 599.Google Scholar
  3. 3.
    Balaban, C., Teillet, M.-A., and LeDourain, N., Application of quailchick chimera system to the study of brain development and behavior. Science241 (1988) 1339–1342.PubMedGoogle Scholar
  4. 4.
    Berry, M., and Rogers, A. W., the migration of neuroblasts in the developing cerebral cortex. J. Anat.99 (1965) 691–709.PubMedGoogle Scholar
  5. 5.
    Caviness, V. S. Jr, Patterns of cell and fiber distribution in neocortex of the reeler mutant mouse. J. comp. Neurol.170 (1976) 435–448.CrossRefPubMedGoogle Scholar
  6. 6.
    Caviness, V. S. Jr, Reeler mutant mice and laminar distribution of afferents in the neocortex. Exp. Brain Res. Suppl.1 (1976) 267–273.Google Scholar
  7. 7.
    Caviness, V. S. Jr, Neocortical histogenesis in normal and reeler mice: a developmental study based upon3H-thymidine autoradiography. Dev. Brain Res.4 (1982) 293–302.CrossRefGoogle Scholar
  8. 8.
    Caviness, V. S. Jr, Crandall, J. E., and Edwards, M. A., The reeler malformation: Implications for neocortical histogenesis, in: Cerebral Cortex, vol. 7, pp. 59–89. Eds A. Peters and E. G. Jones. Plenum Press, New York 1988.Google Scholar
  9. 9.
    Caviness, V. S. Jr, and Williams, R. S., Cellular pathology of developing human cortex, in: Congenital and Acquired Cognitive Disorders, pp. 69–90. Ed. R. Katzman. Raven Press, New York 1979.Google Scholar
  10. 10.
    Cepko, C. L., Retrovirus vectors and their applications in neurobiology. Neuron1 (1988) 345–353.CrossRefPubMedGoogle Scholar
  11. 11.
    Cepko, C. L., Lineage analysis and immortalization of neural cells via retrovirus vectors, in: Neuromethods, vol. 16: Molecular Neurobiological Techniques, pp. 177–219. Humana Press, Clifton, N.J. 1989.Google Scholar
  12. 12.
    Cepko, C. L., Roberts, B. E., and Mulligan, R. C., Construction and applications of a highly transmissable murine retrovirus shuttle vector. Cell37 (1984) 1053–1062.CrossRefPubMedGoogle Scholar
  13. 13.
    Cooper, M. W., Waxman, A. B., and Smith, S. J., Live observation of dynamic events in the formation of rat cerebral cortex by laser microscopy. Soc. Neurosci. Abstr.15 (1989) 808.Google Scholar
  14. 14.
    Domesick, V. B., and Morest, D. K., Migration and differentiation of ganglion cells in the optic tectum of the chick embryo. Neuroscience2 (1977) 459–475.CrossRefPubMedGoogle Scholar
  15. 15.
    Domesick, V. B., and Morest, D. K., Migration and differentiation of shepherd's crook cells in the optic tectum of the chick embryo. Neuroscience2 (1977) 477–491.CrossRefPubMedGoogle Scholar
  16. 16.
    Doe, C. Q., Kuwada, J. Y., and Goodman, C. S., From epithelium to neuroblasts to neurons: The role of cell interactions and cell lineage during insect neurogenesis. Phil. Trans. R. Soc. Lond. B312 (1985) 67–81.Google Scholar
  17. 17.
    Doe, C. Q., and Scott, M. P., Segmentation and homeotic gene function in the developing nervous system of Drosophila. Trends Neurosci.3 (1988) 101–106.CrossRefGoogle Scholar
  18. 18.
    Fishell, G., Rossant, J., and van der Kooy, D., Neuronal lineages in chimeric forebrain are compartmentally segregated. Soc. Neurosci. Abstr.15 (1989) 13.Google Scholar
  19. 19.
    Frank, E., and Sanes, J. R., Cell lineage in chick sensory ganglia studied with a retroviral marker. Soc. Neurosci. Abstr.15 (1989) 600.Google Scholar
  20. 20.
    Frederiksen, K., and McKay, R. D. G., Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J. Neurosci.8 (1988) 1144–1151.PubMedGoogle Scholar
  21. 21.
    Galileo, D. S., Gray, G. E., Owens, G. C., Majors, J., and Sanes, J. R., Neurons and glia arise from a common progenitor in chick optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc. natl Acad. Sci. USA87 (1990) 458–462.PubMedGoogle Scholar
  22. 22.
    Goldowitz, D., Cell partitioning and mixing in the formation of the CNS: analysis of the cortical somatosensory barrels in chimeric mice. Dev. Brain Res.35 (1988) 1–9.CrossRefGoogle Scholar
  23. 23.
    Goldowitz, D., Cell allocation in mammalian CNS formation: evidence from murine interspecies aggregation chimeras. Neuron3 (1989) 705–713.CrossRefPubMedGoogle Scholar
  24. 24.
    Gray, G. E., Glover, J. C., Majors, J., and Sanes, J., Radial arrangement of clonally related cells in the chicken optic tectum: lineage analysis with a recombinant retrovirus. Proc. natl Acad. Sci. USA85 (1988) 7356–7360.PubMedGoogle Scholar
  25. 25.
    Gray, G. E., and Sanes, J. R., Migratory patterns of clonally related cells in chicken tectum and forebrain. Soc. Neurosci. Abstr.15 (1989) 598.Google Scholar
  26. 26.
    Gulay, R. R., Miller, M. W., and Nowakowski, R. S., Progressive changes in cell cycle and DNA-synthetic phase lengths during the development of the dentate gyrus of C57B1/65 mouse. Neurosci. Abstr.15 (1989) 599.Google Scholar
  27. 27.
    Hartenstein, V., Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron3 (1989) 399–411.CrossRefPubMedGoogle Scholar
  28. 28.
    He, X., Treacy, M. N., Simmons, D. M., Ingraham, H. A., Swanson, L. W., and Rosenfield, M. G., Expression of a large family of POU-domain regulatory genes in mammalian development. Nature340 (1989) 35–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Herrup, K., Cell lineage relationships in the development of the mammalian CNS: role of cell lineage in control of Purkinje cell number. Devl Biol.115 (1986) 148–154.CrossRefGoogle Scholar
  30. 30.
    Herrup, K., and Crandall, J. E., Cell lineage in the mouse somatosensory cortex: analysis of chimeras. Soc. Neurosci. Abstr.15 (1989) 599.Google Scholar
  31. 31.
    Hicks, S. P., and D'Amato, C. J., Cell migrations to the isocortex in the rat. Anat. Rec.260 (1968) 619–634.CrossRefGoogle Scholar
  32. 32.
    Hinds, J. W., and Hinds, P. L., Development of retinal amacrine cells in mouse embryos: Evidence for two modes of formation. J. comp. Neurol.213 (1983) 1–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Hirose, G., and Jacobson, M., Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Devl Biol.71 (1979) 191–202.Google Scholar
  34. 34.
    His, W., Die Neuroblasten und deren Entstehung im embryonalen Mark. Arch Anat. Physiol., Anat. Abt. (1889) 249–300.Google Scholar
  35. 35.
    Holt, C. E., Bertsch, T. W., Ellis, H. M., and Harris, W. A., Cellular determination in theXenopus retina is independent of lineage and birth date. Neuron1 (1988) 15–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Hubel, D. H., and Wiesel, T. N., Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol.160 (1962) 106–154.PubMedGoogle Scholar
  37. 37.
    Hubel, D. H., and Wiesel, T. N., Functional architecture of macaque monkey visual cortex. Proc. Roy. Soc. Lond. B198 (1977) 1–59.Google Scholar
  38. 38.
    Jacobson, M., Clonal analysis and cell lineage of the vertebrate central nervous system. A. Rev. Neurosci.8 (1985) 71–102.CrossRefGoogle Scholar
  39. 39.
    Jacobson, m., and Hirose, G., Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32- and 64-cell stages. J. Neurosci.1 (1981) 271–284.PubMedGoogle Scholar
  40. 40.
    Keynes, R., and Lumsden, A., Segmentation and the origin of regional diversity in the vertebrate central nervous system. Neuron2 (1990) 1–9.CrossRefGoogle Scholar
  41. 41.
    Kimmel, C. B., and Warga, R. M., Indeterminate cell lineage of the zebra fish embryo. Devl Biol.124 (1987) 269–280.CrossRefGoogle Scholar
  42. 42.
    Krushel, L. A., Johnston, J. G., Fishell, G., and van der Kooy, D., Retroviral vectors reveal compartment specific cell lineages in the developing rat forebrain. Soc. Neurosci. Abstr.15 (1989) 598.Google Scholar
  43. 43.
    Lawrence, P. A., and Green, S. M., Cell lineage in the developing retina ofDrosophila. Devl Biol.71 (1979) 142–152.CrossRefGoogle Scholar
  44. 44.
    Leber, S. M., Breedlove, S. M., and Sanes, J. R., Lineage of motoneurons in chick spinal cord studied with a retroviral marker. Soc. Neurosci. Abstr.15 (1989) 600.Google Scholar
  45. 45.
    Lorente de No, R., Studies on the structure of the cerebral cortex. I: The area entorhinalis. J. Psychol. Neurol.45 (1933) 381–438.Google Scholar
  46. 46.
    Luskin, M. B., Pearlman, A. L., and Sanes, J. R., Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron1 (1988) 635–647.CrossRefPubMedGoogle Scholar
  47. 47.
    Luskin, M. B., and Shatz, C. J., Studies on the earliest generated cells in the cat's visual cortex: cogeneration of subplate and marginal zones. J. Neurosci.5 (1985) 1062–1075.PubMedGoogle Scholar
  48. 48.
    McConnell, S. K., Development and decision-making in the mammalian cerebral cortex. Brain Res. Rev.13 (1988) 1–23.CrossRefGoogle Scholar
  49. 49.
    McConnell, S. K., Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci.8 (1988) 945–975.PubMedGoogle Scholar
  50. 50.
    McConnell, S. K., The determination of neuronal fate in the cerebral cortex. Trends Neurosci.12 (1989) 342–349.CrossRefPubMedGoogle Scholar
  51. 51.
    McKay, R. D. G., The origins of cellular diversity in the mammalian central nervous system. Cell58 (1989) 815–821.CrossRefPubMedGoogle Scholar
  52. 52.
    Meller, K., and Tetzlaff, W., Neuronal migration during early development of the cerebral cortex. Cell Tiss. Res.163 (1975) 313–325.CrossRefGoogle Scholar
  53. 53.
    Mission, J.-P., Edwards, M. A., Yamamoto, M., and Caviness, V. S. Jr, Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Dev. Brain Res.38 (1988) 183–190.CrossRefGoogle Scholar
  54. 54.
    Misson, J.-P., Austin, C., Takahashi, T., Cepko, C., and Caviness, V. S. Jr, Migrating neurons of the murine cerebrum ascend in parallel to radial fibers: analysis based upon double-labeling of migrating neurons and radial fibers. Soc. Neurosci. Abstr.15 (1989) 599.Google Scholar
  55. 55.
    Moody, S. A., Fate map of the blastomeres of the 16-cell stageXenopus embryo. Devl Biol.119 (1987) 560–578.CrossRefGoogle Scholar
  56. 56.
    Morest, D. K., A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwickl.-Gesch.130 (1970) 265–305.CrossRefGoogle Scholar
  57. 57.
    Moses, K., Ellis, M. C., and Rubin, G. E., The glass gene encodes a zinc-finger protein required byDrosophila photoreceptor cells. Nature340 (1989) 531–536.CrossRefPubMedGoogle Scholar
  58. 58.
    Mountcastle, V. B., Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol.20 (1957), 408–434.PubMedGoogle Scholar
  59. 59.
    Mountcastle, V. B., An organizing principle for cerebral function: the unit module and the distributed system, in: The Neurosciences: Fourth Study Program, pp. 21–42. Eds F. O. Schmitt and F. G. Worden. MIT Press, Cambridge 1979.Google Scholar
  60. 60.
    O'Leary, D. D. M., Do cortical areas emerge from a protocortex? Trends Neurosci.12 (1989) 400–406.CrossRefPubMedGoogle Scholar
  61. 61.
    O'Leary, D. D. M., and Stanfield, B. B., Selective elimination of axons extended by developing cortical neurons is dependent on regional locale. J. Neurosci.9 (1989) 2230–2246.PubMedGoogle Scholar
  62. 62.
    Price, J., Retroviruses and the study of cell lineage. Development101 (1987) 409–419.PubMedGoogle Scholar
  63. 63.
    Price, J., and Thurlow, L., Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development104 (1988) 473–482.PubMedGoogle Scholar
  64. 64.
    Price, J., Turner, D., and Cepko, C., Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. natl Acad. Sci. USA84 (1987) 156–160.PubMedGoogle Scholar
  65. 65.
    Raedler, E., and Raedler, A., Autoradiographic study of early neurogenesis in rat neocortex. Anat. Embryol.154 (1978) 267–312.CrossRefPubMedGoogle Scholar
  66. 66.
    Raff, M. C., Glial cell diversification in the rat optic nerve. Science243 (1989) 1450–1455.PubMedGoogle Scholar
  67. 67.
    Raff, M. C., Miller, R. H., and Noble, M., A glial progenitor that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature303 (1983) 390–396.CrossRefPubMedGoogle Scholar
  68. 68.
    Rakic, P., Mode of cell migration to the superficial layers of fetal monkey neocortex. J. comp. Neurol.145 (1972) 61–84.CrossRefPubMedGoogle Scholar
  69. 69.
    Rakic, P., Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Nature183 (1974) 425–427.Google Scholar
  70. 70.
    Rakic, P., Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature261 (1976) 467–471.PubMedGoogle Scholar
  71. 71.
    Rakic, P., Neuronal migration and contact guidance in the primate telencephalon. Postgraduate med. J.54 (1978) 25–40.Google Scholar
  72. 72.
    Rakic, P., Neuronal-glial interaction during brin development. Trends Neurosci.4 (1981) 184–187.CrossRefGoogle Scholar
  73. 73.
    Rakic, P., Specification of cerebral areas. Science241 (1988) 170–176.PubMedGoogle Scholar
  74. 74.
    Rakic, P., Stensaas, L. J., Sayre, E. P., and Sidman, R. L., Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature250 (1974) 31–34.PubMedGoogle Scholar
  75. 75.
    Ready, D. F., Hanson, T. E., and Benzer, S., Development of theDrosophila retina, a neurocrystalline lattice. Devl Biol.53 (1976) 217–240.CrossRefGoogle Scholar
  76. 76.
    Reh, T. A., Environmental cues influence differentiation of rat retinal germinal neuroepithelial cells. Soc. Neurosci. Abstr.15 (1989) 12.Google Scholar
  77. 77.
    reznikov, K. Y., Fulop, Z., and Hajos, F., Mosaicism of the ventricular layer as the developmental basis of neocortical columnar organization, Anat. Embryol.170 (1984) 99–105.CrossRefPubMedGoogle Scholar
  78. 78.
    Rickmann, M. B., Chronwall, M., and Wolff, J. R., On the development of nonpyramidal neurons and axons outside the cortical plate: The early marginal zone as a pallial anlage. Anat. Embryol.151 (1977) 285–307.CrossRefPubMedGoogle Scholar
  79. 79.
    Rossant, J., Interspecific cell markers and cell lineage in mammals. Phil. Trans. Roy. Soc. Lond. B312 (1985) 91–100.Google Scholar
  80. 80.
    Ryder, E. F., Walsh, C., and Cepko, C. L., A common progenitor for astrocytes and oligodendrocytes. Soc. Neurosci. Abstr.14 (1988) 892.Google Scholar
  81. 81.
    Sanes, J. R., Rubenstein, J. L. R., and Nicolas, J.-F., Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J.5 (1986) 3133–3142.PubMedGoogle Scholar
  82. 82.
    Sanes, J. R., Analysing cell lineage with a recombinant retrovirus. Trends Neurosci.12 (1989) 21–28.CrossRefPubMedGoogle Scholar
  83. 83.
    Schlagger, B. L., and O'Leary, D. D. M., Embryonic rat neocortex transplanted homotopically into newborn neocortex develops area appropriate features. Soc. Neurosci. Abstr.15 (1989) 1050.Google Scholar
  84. 84.
    Schmechel, D. E., and Rakic, P., Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature277 (1979) 303–305.PubMedGoogle Scholar
  85. 85.
    Schmechel, D. E., and Rakic, P., A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol.156 (1979) 115–152.CrossRefPubMedGoogle Scholar
  86. 86.
    Schoenwolf, G. C., and Alvarez, I. S., Cell rearrangements and division in shaping of the avain neural plate. Soc. Neurosci. Abstr.15 (1989) 809.Google Scholar
  87. 87.
    Shatz, C. J., and Luskin, M. B., The relationships between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J. Neurosci.6 (1986) 3655–3668.PubMedGoogle Scholar
  88. 88.
    Sheard, P., and Jacobson, M., Clonal restriction boundaries inXenopus embryos shown with two intracellular lineage tracers. Science236 (1987) 851–854.PubMedGoogle Scholar
  89. 89.
    Shoukimas, G. M., and Hinds, J. W., The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J. comp. Neurol.179 (1978) 795–830.CrossRefPubMedGoogle Scholar
  90. 90.
    Soriano, P., and Jaenisch, R., Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell lineages. Cell46 (1986) 19–29.CrossRefPubMedGoogle Scholar
  91. 91.
    Stanfield, B. B., and O'Leary, D. D. M., Fetal occipital neurones transplanted to the rostral cortex can extend and maintain a pyramidal tract axon. Nature (Lond.)313 (1985) 135–137.CrossRefGoogle Scholar
  92. 92.
    Sternberg, P. W., Lateral inhibition during vulval induction inCaenorhabditis elegans. Nature335 (1988) 551–554.CrossRefPubMedGoogle Scholar
  93. 93.
    Temple, S., Division and differentiation of isolated CNS blast cells in microculture. Nature340 (1989) 471–473.CrossRefPubMedGoogle Scholar
  94. 94.
    Turner, D., and Cepko, C., Cell lineage in the rat retina: a common progenitor for neurons and glial persists late in development. Nature328 (1987) 131–136.CrossRefPubMedGoogle Scholar
  95. 95.
    Turner, D. L., Snyder, E. Y., and Cepko, C. L., Cell lineage analysis in the embryonic mouse retina by retroviral vector-mediated gene transfer. Soc. Neurosci. Abstr.14 (1988) 892.Google Scholar
  96. 96.
    Valverde, F., Facal-Valverde, M. V., Santacana, M., and Heredia, M., Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated Golgi and autoradiographic study. J. comp. Neurol.290 (1989) 118–140.CrossRefPubMedGoogle Scholar
  97. 97.
    Voigt, T., Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. comp. Neurol.289 (1989) 74–88.CrossRefPubMedGoogle Scholar
  98. 98.
    v. Waechter, R., and Jaensch, P., Generation time of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res.46 (1972) 235–250.CrossRefPubMedGoogle Scholar
  99. 99.
    Walsh, C., and Cepko, C. L., Clonally related cortical cells show several migration patterns. Science241 (1988) 1342–1345.PubMedGoogle Scholar
  100. 100.
    Wetts, R., and Fraser, S. E., Multipotent precursors can give rise to all major cell types of the frog retina. Science239 (1988) 1142–1145.PubMedGoogle Scholar
  101. 101.
    Wetts, R., and Fraser, S. E., Slow intermixing of cells duringXenopus embryogenesis contributes to the consistency of the blastomere fate map. Development105 (1989) 9–15.PubMedGoogle Scholar
  102. 102.
    Wilkinson, D. G., Bhatt, S., Cook, M., Boncinelli, E., and Krumlauf, R., Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature341 (1989) 405–409.CrossRefPubMedGoogle Scholar
  103. 103.
    Yochem, J., Weston, K., and Greenwald, I., TheCaenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature335 (1988) 547–550.CrossRefPubMedGoogle Scholar
  104. 104.
    Young, R. W., Cell proliferation during postnatal development of the retina in the mouse. Dev. Brain Res.21 (1985) 229–239.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1990

Authors and Affiliations

  • Ch. Walsh
    • 1
  • C. L. Cepko
    • 1
  1. 1.Department of GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations