, Volume 52, Issue 9, pp 927–931 | Cite as

Possible involvement of the phloem sealing system in the acceptance of a plant as host by an aphid

  • C. M. Caillaud
  • H. M. Niemeyer
Research Articles


Possible reasons for the rejection of some lines ofTriticum monococcum (Tm44 and Tm46) by the aphidSitobion avenae were explored. In allT. monococcum lines studied, whether unfavourable (non-host/resistant plant) or favourable (host/susceptible plant), the concentrations of hydroxamic acids, a family of aphid-resistance factors in cereals, were significantly lower than the levels in the favourable host-plantTriticum aestivum cv. Therefore, hydroxamic acids did not account for the host/non-host patterns observed. Phloem sap was collected by stylectomy from young seedlings of favourable and unfavourable plants. In non-aphid-resistant genotypes, the success in stylectomy, the proportion of amputated stylets resulting in long (>1 min) exudations, the average duration of exudation, and the final volume of sap exuded, were higher than in the aphid-resistant genotypes. It is concluded that aphid interference with the phloem sealing system of the plant is a likely mechanism of rejection ofT. monococcum lines Tm44 and Tm46 as hosts byS. avenae.

Key words

Aphids (Sitobion avenaeTriticum spp phloem sap secondary compounds (hydroxamic acids) stylectomy aphid-plant interactions plant resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klingauf F. A. (1988) Host-plant finding and acceptance. In: Aphids, Their Biology, Natural, Enemies and Control, vol. 2B, pp. 209–223, Minks A. K. and Harrewijn P. (eds) Elsevier Science Publishers, AmsterdamGoogle Scholar
  2. 2.
    Klingauf F. A. (1988) Feeding, adaptation and excretion. In: Aphids, Their Biology, Natural Enemies and Control, vol. 2B, pp. 225–253, Minks A. K. and Harrewijn P. (eds), Elservier Science Publishers, AmsterdamGoogle Scholar
  3. 3.
    Montllor C. B. (1993) Aphid feeding and nutrition. In: Insect-plant Interactions III, pp. 173–196, Bernays E. A. (ed.), CRC, Boca Raton, USAGoogle Scholar
  4. 4.
    Tjallingii W. F. (1988) Electronic recording of plant penetration behaviour by aphids. Entomologia Exp. Appl.24: 521–530Google Scholar
  5. 5.
    Tjallingii W. F. (1988) Electrical recording of stylet penetration activities. In: Aphids, Their Biology, Natural Enemies and Control, vol. 2B, pp. 95–108, Minks A. K. and Harrewijn P. (eds), Elsevier Science Publishers, AmsterdamGoogle Scholar
  6. 6.
    Girousse C., Bonnemain J. L., Delrot S., and Bournoville R. (1991) Sugar and amino acid composition of phloem sap ofMedicago sativa — A comparative study of two collecting methods. Plant Physiol. Biochem.29: 41–48Google Scholar
  7. 7.
    Givovich A., Sandström J., Niemeyer H. M. and Pettersson, J. (1994) Presence of a hydroxamic acid glucoside in wheat phloem sap, and its consequences for performance ofRhopalosiphum padi (L.) (Homoptera: Aphididae). J. Chem. Ecol.20: 1923–1930Google Scholar
  8. 8.
    van Helden M., Tjallingii W. F. and van Beek T. A. (1994) Phloem sap collection from lettuce (Lactuca sativa L.): methodology and yield. J. Chem. Ecol.20: 3173–3190Google Scholar
  9. 9.
    King R. W. and Zeevaart J. A. D. (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol.53: 96–103Google Scholar
  10. 10.
    Unwin F. M. (1978) A versatile high frequency microcautery. Physiol. Entomol.3: 71–73Google Scholar
  11. 11.
    Tjallingii W. F. and Hogen Esch Th. (1993) Fine structure of the stylet route in plant tissue by some aphid species. Physiol. Entomol.18: 317–328Google Scholar
  12. 12.
    Eschrich W. (1975) Sealing systems in phloem. In: Encyclopedia of Plant Physiology, vol. 1. Transport in Plants I. Phloem Transport, pp. 39–54, Zimmermann M. H. and Milburn J. A. (eds), Springer Verlag, BerlinGoogle Scholar
  13. 13.
    Evert R. F. (1990) Dicotyledons. In: Sieve Elements: Comparative Structure, Induction and Development, pp. 103–137, Behnke H. D. and Sjölund R. D. (eds), Springer, BerlinGoogle Scholar
  14. 14.
    Di Pietro J. P., Soster, C., Chaubet B. and Caillaud C. M. (1993) The resistance of different lines ofTriticum species to the aphidSitobion avenae. Bull. International Organisation for Biological Control16: 110–116Google Scholar
  15. 15.
    Caillaud C. M., Pierre J. S., Chaubet J. P. and Di Pietro J. P. (1995) Analysis of wheat resistance to the cereal aphidSitobion avenae using electrical penetration graphs and flowcharts combined with correspondence analysis. Entomologia Exp. Appl.75: 9–18Google Scholar
  16. 16.
    Bohidar K., Wratten S. D. and Niemeyer H. M. (1986) Effects of hydroxamic acids on the resistance of wheat to the aphidSitobion avenae. Ann. Appl. Biol.109: 193–198Google Scholar
  17. 17.
    Niemeyer H. M. (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the graminae. Phytochemistry27: 3349–3358Google Scholar
  18. 18.
    Givovich, A. and Niemeyer H. M. (1995) Effect of hydroxamic acids on feeding behaviour and performance of cereal aphids on wheat. Eur. J. Entomol.91: 371–374Google Scholar
  19. 19.
    Givovich A. and Niemeyer H. M. (1995) Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomologia Exp. Appl.74: 115–119Google Scholar
  20. 20.
    Girousse C. and Bournoville R. (1994) Role of phloem, sap quality and exudation characteristics on performance of pea aphid grown on lucerne genotypes. Entomologia Exp. Appl.70: 227–235Google Scholar
  21. 21.
    Caillaud C. M., Dedryver C. A. and Simon J. C. (1994) Development and reproductive potential of the cereal aphidSitobion avenae on resistant wheat lines (Triticum monococcum). Ann. Appl. Biol.125: 219–232Google Scholar
  22. 22.
    Caillaud C. M., Di Pietro J. P., Chaubert B. and Pierre J. S. (1995) Application of discriminant analysis to electrical penetration graphs of the aphidSitobion avenae feeding on resistant and susceptible wheat. J., Appl. Entomol.119: 103–106Google Scholar
  23. 23.
    Argandoña, V. H., Luza J. G., Niemeyer H. M. and Corcuera L. J. (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry19: 1665–1668Google Scholar
  24. 24.
    Lyons P. C., Hipskind J. D., Wood K. V. and Nicholson R. L. (1988) Separation and quantification of cyclic hydroxamic acids and related compounds by high-pressure liquid chromatography. J. Agric. Food Chem.36: 57–60Google Scholar
  25. 25.
    Queirolo C. B., Andreo C. S., Niemeyer H. M. and Corcuera L. J. (1983) Inhibition of ATPase from chloroplasts by an hydroxamic acid from the graminae. Phytochemistry22: 2455–2458Google Scholar
  26. 26.
    Jernow J. L. and Rosen P. (1975) 2H-1,4-benzoxazin-3(4H)-ones. U.S. Patent 3,862, 180; 8 ppGoogle Scholar
  27. 27.
    Niemeyer H. M. (1988) Hydroxamic acids content ofTriticum species. Euphytica37: 289–293Google Scholar
  28. 28.
    Niemeyer, H. M., Copaja, S. V. and Barria, B. N. (1992) The triticae as sources of hydroxamic acids, secondary metabolites in wheat conferring resistance against aphids. Hereditas116: 295–299Google Scholar
  29. 29.
    Walsh M. A. and Melaragano J. E. (1981) Structural evidence for plastid inclusions as a possible ‘sealing’ mechanism in the phloem of monocotyledons. J. Exp. Bot.32: 311–320Google Scholar
  30. 30.
    Eleftheriou E. P. (1984) Sieve-element plastids ofTriticum andAegilops (Poacae). Plant Syst. Evol.145: 119–133Google Scholar
  31. 31.
    Eleftheriou E. P. (1990) Monocotyledons. In: Sieve Elements: Comparative Structure, Induction and Development, pp. 139–159, Behnke H. D. and Sjölund R. D. (eds), Springer Verlag, BerlinGoogle Scholar
  32. 32.
    Toth K. F. and Sjölund R. D. (1994) Monoclonal antibodies against phloem-P-protein from plant tissue cultures. Am. J. Bot.8: 1378–1383Google Scholar
  33. 33.
    Miles P. W. (1987) Feeding processes of Aphidoidea in relation to effects on their food plants. In: Aphids, Their Biology, Natural Enemies and Control, vol. 2C, pp. 321–339, Minks A. K. and Harrewijn P. (eds), Elsevier Science Publishers, AmsterdamGoogle Scholar
  34. 34.
    Campbell B. C. and Dryer D. L. (1985) Host-plant resistance of sorghum: differential hydrolysis of sorghum pectic substances by polysacharases of greenbugbiotypes (Schizaphis graminum, Homoptera Aphididae). Arch. Insect Biochem. Physiol.2: 203–215Google Scholar
  35. 35.
    Dreyer D. L. and Campbell B. C. (1987) Chemical basis of host-plant resistance to aphids. Plant Cell Environ.10: 353–361Google Scholar
  36. 36.
    Peng Z. and Miles P. W. (1988) Studies on the salivary physiology of plant bugs: function of the cathecol oxidase of the rose aphid. J. Insect Physiol.34: 1027–1033Google Scholar
  37. 37.
    Skou J. P. (1985) On the enhanced callose deposition in barley with ml-o powdery mildew resistance genes. Phytopathol. Z.112: 207–216Google Scholar
  38. 38.
    van Hoof A., Leykam J., Schaeffer H. J. and Walton J. D. (1991) A single beta 1,3-glucanase secreted by the maize pathogenCochliobolus carbonum acts by an exolytic mechanism. Physiol. Molec Plant Pathol.39: 259–267Google Scholar
  39. 39.
    Brockmann B., Smit R. and Tudizynski P. (1992) Characterization of an extracellular beta 1,3-glucanase ofClaviceps purpurea. Physiol. Molec. Plant Pathol.40: 191–201Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • C. M. Caillaud
    • 1
  • H. M. Niemeyer
    • 2
  1. 1.Laboratoire INRA-ENSA de ZoologieLe Rheu(France)
  2. 2.Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileSantiago(Chile)

Personalised recommendations