, Volume 53, Issue 6, pp 612–627 | Cite as

Trijodbenzoesäure und die Stoffleitung bei höheren Pflanzen

  • Eike Libbert


The effect of 2,3,5-triiodobenzoic acid (TIBA) on the translocation of various substances within etiolated pea plants was tested by applying the substances to different places on the decapitated plants and measuring the effect of the substances on the growth of lateral buds after placing a lanolin ring containing TIBA around the stem between the place of application of the substance and the buds. In control experiments the TIBA-ring was placed in such a way, that TIBA and the other substance reached the bud from opposite directions.

TIBA blocked the basipetal translocation of indole-3-acetic acid, α-4-chlorophenoxyisobutyric acid and α-(1-naphthylmethylsulfid) propionic acid, it did not block the acropetal translocation of sucrose, potassium nitrate and indole-3-acetic acid. It did howevers block the acropetal translocation of native inhibitors (correlation inhibitors) extracted from pea plants. It is concluded that TIBA is a general blocker of the energy requiring translocation of many substances in plants. Moreover TIBA produces various different effects.

Intensity of translocation of TIBA was equal in both directions, acropetal and basipetal. Application of TIBA to more distal points of the stem may cause greater effects because of a faster migration through younger tissues into the stem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åberg, B.: On the interaction of 2,3,5-triiodobenzoic acid and maleic hydrazide with auxins. Physiol. Plantarum (Cph.)6, 277 (1953).Google Scholar
  2. Audus, L. J.: Auxin antagonists and synergists. A critical approach. New Phytol.53, 461 (1954).Audus, L. J., andR. Thresh: The effects of synthetic growth-regulator treatments on the level of free endogenous growth-substances in plants. Ann. Bot., N. S.20, 439 (1956).Google Scholar
  3. Champagnat, P., etC. Pigeret: Action comparée de glycocholate de sodium (NaG) et de l'acide triiodobenzoique (T.I.B.A.) sur la stimulation exercée par le cotylédon de lin sur son bourgeon axillaire. Rev. gén. Bot.64, 307 (1957).Google Scholar
  4. Dostál, R.: Experiments in plant polarity. Stud. Plant Physiol. (Praha)33 (1958).Google Scholar
  5. ——: Versuche zur apikalen Dominanz in der Pflanzenmorphologie. Acta Acad. Sci. Cech. Basis Brunensis31, 1 (1959).Google Scholar
  6. Galston, A. W.: The effect of 2,3,5-triiodobenzoic acid on the growth and flowering of soybeans. Amer. J. Bot.34, 356 (1947).Google Scholar
  7. Gorter, C. J.: Abscission as a bio-assay for the determination of plant regulators. Physiol. Plantarum (Cph.)10, 858 (1957).Google Scholar
  8. Haccius, B., u.H. Nies: Über die Wirkung von 2,3,5-Trijodbenzoesäure und 2,4,6-Trichlorphenoxyessigsäure auf die Abgliederung entspreiteter Blattstiele. Planta (Berl.)47, 613 (1956).Google Scholar
  9. Hay, J. R.: The effect of 2,4-dichlorophenoxyacetic acid and 2,3,5-triiodobenzoic acid on the transport of indoleacetic acid. Plant Physiol.31, 118 (1956).Google Scholar
  10. Heinze, W.: Untersuchungen über den Kohlenhydrathaushalt bei Tomaten nach Behandlung mit 2,3,5-Trijodbenzoesäure. Naturwiss.45, 169 (1958).Google Scholar
  11. Hugon, E.: Influence de l'acide-9 anthronique sur les corrélations entre le cotylédon et son bourgeon axillaire. C. R. Acad. Sci. (Paris)245, 2072 (1957).Google Scholar
  12. Kandler, O., u.E. Fink: Über den Einfluß von 2,3,5-Trijodbenzoesäure auf den Stoffwechsel in vitro kultivierter Maiswurzeln. Flora (Jena)142, 295 (1955).Google Scholar
  13. Kessler, B., andZ. W. Moscicki: Effect of triiodobenzoic acid and maleic hydrazide upon the transport of foliar applied calcium and iron. Plant Physiol.33, 70 (1958).Google Scholar
  14. Kuse, G.: Effect of 2,3,5-triiodobenzoic acid on the growth of lateral bud and on tropism of petiole. Mem. Coll. Sci. Univ. Kyoto, Ser. B20, 207 (1953).Google Scholar
  15. ——: Bud inhibition and correlative growth of petiole in sweet potato stem. Mem. Coll. Sci. Univ. Kyoto, Ser. B21, 107 (1954).Google Scholar
  16. ——: Necessity of auxin for the growth effect of gibberellin. Bot. Mag. (Tokyo)71, 151 (1958).Google Scholar
  17. Leopold, A. C., andW. H. Klein: Maleic hydrazide as an antiauxin in plants. Science114, 9 (1951).PubMedGoogle Scholar
  18. Leopold, A. C., andC. A. Price: Sulfhydryls in plants. I. Reactions with growth regulators. Plant Physiol.32, 520 (1958).Google Scholar
  19. Libbert, E.: Nachweis und chemische Trennung des Korrelationshemmstoffes und seiner Hemmstoffvorstufe. Planta (Berl.)45, 405 (1955).Google Scholar
  20. ——: Wechselwirkungen zwischen Auxinen und Inhibitoren bei Keimungsversuchen. Phyton (Argentina)9, 81 (1957).Google Scholar
  21. ——: Einfluß der Trijodbenzoesäure (TIBA) auf die Wirkstoffleitung im Pflazenstengel. Naturwiss.45, 20 (1958a).Google Scholar
  22. ——: Der primäre Angriffsort pflanzeneigener Hemmstoffe. Physiol. Plantarum (Cph.)11, 516 (1958b).Google Scholar
  23. Linser, H.: Zur Wirkungsweise von Wuchs- und Hemmstoffen. IV. Die Konzentrations-Wirkungskurven einiger synthetischer Zellstreckungswuchsstoffe in Gegenwart verschiedener Mengen von synthetischen Hemmstoffen. Biochem. biophys. Acta15, 25 (1954).PubMedGoogle Scholar
  24. McRae, D. H., andJ. Bonner: Chemical structure and antiauxin activity. Physiol. Plantarum (Cph.)6, 485 (1953).Google Scholar
  25. Meijer, G.: The influence of light and of growth regulators on the elongation of gherkin seedlings. Acta bot. neerl.7, 621 (1958).Google Scholar
  26. Meyer, J.: Die photolytischen Abbauprodukte der 3-Indolessigsäure und ihre physiologische Wirkung auf das Wachstum der Avena-Koleoptile. Z. Bot.46, 125 (1958).Google Scholar
  27. Morgan, D. G., u.H. Söding: Über die Wirkungsweise von Phthalsäuremono-α-Naphthylamid (PNA) auf das Wachstum der Haferkoleoptile. Planta (Berl.)52, 235 (1958).Google Scholar
  28. Muir, R. M., andC. Hansch: On the action of growth regulators. Plant physiol.28, 218 (1953).Google Scholar
  29. Nagao, M., andY. Ohwaki: The action of transcinnamic and 2,3,5-triiodobenzoic acids in the rice seedlings. Sci. Rep. Tohoku Univ., Ser. IV21, 96 (1955).Google Scholar
  30. Niedergang-Kamien, E., andA. C. Leopold: Inhibitors of polar auxin transport. Physiol. Plantarum (Cph.)10, 29 (1957).Google Scholar
  31. Niedergang-Kamien, E., andF. Skoog: Studies on polarity and auxin transport in plants. I. Modification of polarity and auxin transport by triiodobenzoic acid. Physiol. Plantarum (Cph.)9, 60 (1956).Google Scholar
  32. Pohl, R.: Das Wuchsstoff/Hemmstoffproblem der höheren Pflanze. Naturwiss.39, 1 (1952).CrossRefGoogle Scholar
  33. Snyder, W. E.: Some responses of plants to 2,3,5-triiodobenzoic acid. Plant Physiol.24, 195 (1949).Google Scholar
  34. Street, H. E.: Factors controlling meristematic activity in excised roots VI. Effects of various “antiauxins” on the growth and survival of excised roots of Lycopersicum esculentum, Mill. Physiol. Plantarum (Cph.)8, 48 (1955).Google Scholar
  35. Thimann, K. V., andW. D. Bonner: The action of triiodobenzoic acid on growth. Plant Physiol.23, 158 (1948).Google Scholar
  36. Tukey, H. B., F. W. Went, R. M. Muir, andJ. van Overbeek: Nomenclature of chemical plant regulators. Plant Physiol.29, 307 (1954).Google Scholar
  37. Waard, J. de, andP. A. Florschütz: On the interaction of 2,3,5-triiodobenzoic and indole-3-acetic acid in growth processes. Proc. kon. med. Akad. Wet.51, 1317 (1948).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • Eike Libbert
    • 1
  1. 1.Abteilung Botanik der Veterinärmedizinischen Fakultät der Humboldt-Universität zu BerlinBerlin N 4

Personalised recommendations