Multidimensional Systems and Signal Processing

, Volume 1, Issue 4, pp 363–379 | Cite as

Bilateral polynomial matrix equations in two indeterminates

  • Li Xu
  • Osami Saito
  • Kenichi Abe
Article

Abstract

Two special cases of the bilateral 2-D polynomial matrix equationDU +VN=C whenC=I andC=αI withα being a Ω-stable 2-D polynomial, which are related respectively to deadbeat and asymptotic control problems of 2-D systems, are first considered. By generalizing the concepts of factor coprimeness, zero coprimeness and zero skew primeness in the 2-D polynomial ring to the ring of causal Ω-stable 2-D rational functions, a constructive solution of these two problems mentioned is proposed. Based on these results, we derive a solvability condition for the bilateral equiation whereC is a general 2-D polynomial matrix. The general solutions are investigated as well.

Keywords

Polynomial matrices Bilateral equations 2-D systems 2-D polynomial skew primeness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisiacco, M., Fornasini, E. and Marchesini, G. 1985. On Some Connections Between BIBO and Internal Stability of Two-Dimensional Filters.IEEE Trans. on Circ. and Syst., 32, 948–953.CrossRefGoogle Scholar
  2. Bisiacco, M., Fornasini, E. and Marchesini. 1986. Control Design for 2D Systems.Frequency Domain and State Space Methods for Linear Systems, (ed. C.I. Byrnes and A. Lindquist) North Holland: Elsevier, pp. 99–113.Google Scholar
  3. Desoer, C.A., Liu, R., Murray, J. and Saeks, R. 1980. Feedback Systems Design: the Fractional Representation Approach to Analysis and Synthesis.IEEE Trans. Automat. Control, 25, 399–412.CrossRefGoogle Scholar
  4. Guiver, J.P. and Bose, N.K. 1982. Polynomial Matrix Primitive Factorization over Arbitrary Coefficient Field and Related Results.IEEE Trans. Circ. and Syst., 29, 649–657.CrossRefGoogle Scholar
  5. Guiver, J.P. and Bose, N.K. 1985. Causal and Weakly Causal 2-D Filters with Applications in Stabilization.Multidimensional Systems Theory, (ed. N.K. Bose) Dordrecht: Reidel, p. 52.Google Scholar
  6. Kaczorek, T. 1984. Dead-beat Servo Problem for 2-D Multivariable Systems.Proc. 3rd Int. Conf. Syst. Eng., Dayton, OH, 524–529.Google Scholar
  7. Kamen, E.W. 1980. On the Relationship Between Zero Criteria for Two-Variable Polynomials and Asymptotic Stability of Delay Differential Equations.IEEE Trans. Automat. Control, 25, 983–984.CrossRefGoogle Scholar
  8. Kamen, E.W., Khargonekar, P. and Tannenbaum, A. 1986. Proper Stable Bezout Factorizations and Feedback Control of Linear Time-Delay Systems.Int. J. of Control, 43, 837–857.Google Scholar
  9. Khargonekar, P. and Sontag, E.D. 1982. On the Relation Between Stable Matrix Fraction Factorizations and Regulable Realizations of Linear Systems Over Rings.IEEE Trans. Automat. Control, 27, 627–638.CrossRefGoogle Scholar
  10. Kučera, V. and Šebek, M. 1984. On Deadbeat Controllers.IEEE Trans. Automat. Control, 29, 719–722.CrossRefGoogle Scholar
  11. Lin, Z. 1988. Feedback Stabilization of Multivariable Two-Dimensional Linear Systems.Int. J. of Control, 48, 1301–1317.Google Scholar
  12. Morf, M., Levy, B. and Kung, S.Y. 1977. New Result in 2-D Systems Theory, Part I: 2-D Polynomial Matrices, Factorization and Coprimeness.Proc. IEEE, 65, 861–872.Google Scholar
  13. Morse, A.S. 1976. Ring Models for Delay-Differential System.Automatica, 12, 529–531.CrossRefGoogle Scholar
  14. Raman, V.R. and Liu, R. 1986. A Constructive Algorithm for the Complete Set of Compensators for Two-Dimensional Feedback Systems Design.IEEE Trans. Automat. Control, 31, 166–170.CrossRefGoogle Scholar
  15. Saeks, R. and Murray, J. 1981. Feedback System Design: the Tracking and Disturbance Rejection Problems.IEEE Trans. Automat. Control, 26, 203–217.CrossRefGoogle Scholar
  16. Šebek, M. 1988a. n-D Polynomial Matrix Equations.IEEE Trans. Automat. Control, 33, 499–502.CrossRefGoogle Scholar
  17. Šebek, M. 1988b. Asymptotic Tracking for 2-D and Delay-Differential Systems.Automatica, 24, 711–713.CrossRefGoogle Scholar
  18. Šebek, M. 1989. Two-Sided Equations and Skew Primeness for n-D Polynomial Matrices.Systems & Control Letters, 12, 331–337.Google Scholar
  19. Vidyasagar, M., Schneider, H. and Francis, B. 1982. Algebraic and Topological Aspects of Feedback Stabilization.IEEE Trans. Automat. Control, 27, 880–894.CrossRefGoogle Scholar
  20. Vidyasagar, M. 1985.Control System Synthesis: A Factorization Approach, Cambridge, MA: MIT Press.Google Scholar
  21. Wolovich, W.A. 1978. Skew Prime Polynomial Matrices.IEEE Trans. Automat. Control, 23, 880–887.CrossRefGoogle Scholar
  22. Wolovich, W.A. 1983. Deadbeat Error Control of Discrete Multivariable Systems.Int. J. of Control, 37, 567–580.Google Scholar
  23. Xu, L., Saito, O. and Abe, K. 1989. Tracking and Regulator Problems in 2-D Systems.Preprints of the 12th SICE Symp. on Dynamic System Theory, Toyohashi, Japan, Nov., pp. 181–184 (in Japanese).Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Li Xu
    • 1
  • Osami Saito
    • 1
  • Kenichi Abe
    • 1
  1. 1.Toyohashi University of TechnologyTempaku Toyohashi AichiJapan

Personalised recommendations