Advertisement

Experientia

, Volume 34, Issue 5, pp 653–655 | Cite as

Involutive morphological modifications in the rat adrenal glomerular zone after a low-sodium diet

  • G. Palacios
Article

Summary

We have studied glomerular zone involution in the rat's adrenal gland after a period of hyperfunction brought about by a low-sodium diet. The changes observed in this zone affect those organoids that are more directly involved in steroid genesis; mitochondria, smooth endoplasmic reticulum and liposomes. The Golgi complexes appear very developed, often, showing, a positive acid phosphatase activity. Lysosomes suffered a considerable increase in their number, and carried out their digestive function on liposomes. All those changes discussed here are seen as an accomodation of this zone to the new normofunctional situation.

Keywords

Steroid Endoplasmic Reticulum Adrenal Gland Phosphatase Activity Acid Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Lever, Endocrinology58, 163 (1956).PubMedGoogle Scholar
  2. 2.
    F. Giacomelli, J. Weiner and D. Spiro, J. Cell Biol.26, 499 (1965).CrossRefPubMedGoogle Scholar
  3. 3.
    J.A. Long and A.L. Jones, Anat. Rec.166, 1 (1970).PubMedGoogle Scholar
  4. 4.
    J.H. Shelton and A.L. Jones, Anat. Rec.170, 147 (1971).PubMedGoogle Scholar
  5. 5.
    D.T. Domoto, J.E. Boyd, P.J. Mulrow and M. Kashgarian, Am. J. Path.72, 433 (1973).PubMedGoogle Scholar
  6. 6.
    G. Palacios and M. Lafarga, Experentia32, 381 (1976).Google Scholar
  7. 7.
    G. Palacios, M. Lafarga and R. Perez, Experentia32, 909 (1976).Google Scholar
  8. 8.
    A.J. Marx and H.W. Deane, Endocrinology73, 317 (1963).PubMedGoogle Scholar
  9. 9.
    P.M. Hartroft and A.B. Eisenstein, Endocrinology60, 641 (1957).PubMedGoogle Scholar
  10. 10.
    G.W. Gomori, Microscopic Histochemistry, Principles and Practice. University of Chicago Press, Chicago 1952.Google Scholar
  11. 11.
    J. Frühling, G. Sand, W. Penasse, F. Pecheux and A. Claude, J. Ultrastruct. Res.44, 113 (1973).PubMedGoogle Scholar
  12. 12.
    J.A.G. Rhodin, J. Ultrastruct. Res.34, 23 (1971).CrossRefPubMedGoogle Scholar
  13. 13.
    D. Szabó, Acta morph. hung.16, 121 (1968).PubMedGoogle Scholar
  14. 14.
    D. Szabó, E. Stark and B. Varga, Histochemie10, 321 (1967).CrossRefPubMedGoogle Scholar
  15. 15.
    D.P. Penney, J. Olson and K. Averill, Z. Zellforsch.146, 297 (1973).PubMedGoogle Scholar
  16. 16.
    H. Fujita, Z. Zellforsch.125, 480 (1972).CrossRefPubMedGoogle Scholar
  17. 17.
    S.E. Dietert and T.J. Scallen, J. Cell Biol.40, 44 (1969).CrossRefPubMedGoogle Scholar
  18. 18.
    S. Idelman, Int. Rev. Cytol.27, 181 (1970).PubMedGoogle Scholar
  19. 19.
    E. Mäusle, Beitr. Path.151, 344 (1974).Google Scholar
  20. 20.
    A.H. Wyllie, J.F.R. Kerr, I.A.M. Macaskill and A.R. Currie, J. Path.111, 85 (1973).CrossRefPubMedGoogle Scholar
  21. 21.
    A.H. Wyllie, J.F.R. Kerr and A.R. Currie, J. Path.111, 255 (1973).CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • G. Palacios
    • 1
  1. 1.Institute of Foundamental BiologyAutonomous University of BarcelonaBarcelona-13(Spain)

Personalised recommendations