Experientia

, Volume 34, Issue 5, pp 575–576 | Cite as

Metal binding to myosin and to myosin DTNB-light chain

  • M. M. Werber
Article

Summary

The effects of various divalent cations, Ca2+, Mg2+ and Mn2+ on the intrinsic fluorescence of heavy meromyosin (HMM) and myosin 5,5′-dithio-bis-(2-nitrobenzoate) DTNB-light chain of rabbit striated muscle, are compared. At pH 6.4, the fluorescence change induced by the metal ions is present only in the isolated light chain and disappears in HMM, thus indicating an interaction between the heavy and light chains with respect to the binding of the metal ions. Whereas Mg2+ binds more strongly than Ca2+ to myosin, this order is reversed in the case of the DTNB-light chain.

Keywords

Striate Muscle Light Chain Divalent Cation Metal Binding Intrinsic Fluorescence 

References

  1. 2.
    A. Weber and J.M. Murray, Physiol. Rev.53, 612 (1973).PubMedGoogle Scholar
  2. 3.
    A.G. Szent-Györgyi, E.M. Szentkiralyi and J. Kendrick-Jones, J. molec. Biol.74, 179 (1973).CrossRefPubMedGoogle Scholar
  3. 4.
    A. Sobieszek and J.V. Small, J. molec. Biol.102, 75 (1976).CrossRefPubMedGoogle Scholar
  4. 5.
    W. Lehman and A.G. Szent-Györgyi, J. gen. Physiol.66, 1 (1975).CrossRefPubMedGoogle Scholar
  5. 6.
    M.M. Werber and A. Oplatka, Biochem. biophys. Res. Commun.57, 823 (1974).CrossRefPubMedGoogle Scholar
  6. 7.
    R.D. Bremel and A. Weber, Biochim. biophys. Acta376, 366 (1975).PubMedGoogle Scholar
  7. 8.
    W. Lehman, Biochem. J.163, 291 (1977).PubMedGoogle Scholar
  8. 9.
    S.M. Pemrick, Biochemistry16, 4047 (1977).CrossRefPubMedGoogle Scholar
  9. 10.
    B. Kiely and A. Martonosi, Biochim. biophys. Acta172, 158 (1969).PubMedGoogle Scholar
  10. 11.
    M.M. Werber, A.G. Szent-Györgyi and G.D. Fasman, J. Mechanochem. Cell Mot.2, 35 (1973).Google Scholar
  11. 12.
    K. Morimoto and W.F. Harrington, J. molec. Biol.88, 693 (1974).CrossRefPubMedGoogle Scholar
  12. 13.
    M.M. Werber, S.L. Gaffin and A. Oplatka, J. Mechanochem. Cell Mot.1, 91 (1972).Google Scholar
  13. 14.
    J. Kendrick-Jones, E.M. Szentkiralyi and A.G. Szent-Györgyi, J. molec. Biol.104, 747 (1976).CrossRefPubMedGoogle Scholar
  14. 15.
    N.A. Biró, L. Szilágyi and M. Bálint, Cold Spring Harb. Symp. quant. Biol.37, 55 (1972).Google Scholar
  15. 16.
    M. Bálint, F.A. Stréter, I. Wolf, B. Nagy and J. Gergely, J. biol. Chem.250, 6168 (1975).PubMedGoogle Scholar
  16. 17.
    A.G. Weeds and R.S. Taylor, Nature, Lond.257, 54 (1975).Google Scholar
  17. 18.
    C.R. Bagshaw, Biochemistry16, 59 (1977).CrossRefPubMedGoogle Scholar
  18. 19.
    A.G. Weeds and B. Pope, J. molec. Biol.111, 129 (1977).PubMedGoogle Scholar
  19. 20.
    M.M. Werber, A.G. Szent-Györgyi and G.D. Fasman, Biochemistry11, 2872 (1972).CrossRefPubMedGoogle Scholar
  20. 21.
    S.L. Gaffin and S. Watanabe, J. Mechanochem. Cell Mot.1, 139 (1972).Google Scholar
  21. 22.
    J. Gazith, S. Himmelfarb and W.F. Harrington, J. biol. Chem.245, 15 (1970).PubMedGoogle Scholar
  22. 23.
    H.G. Brittain, F.S. Richardson and R.B. Martin, J. Am. chem. Soc.98, 8255 (1976).CrossRefPubMedGoogle Scholar
  23. 24.
    M.C. Beinfeld, D.A. Bryce, D. Kochavy and A. Martonosi, J. biol. Chem.250, 6282 (1975).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • M. M. Werber
    • 1
  1. 1.Polymer DepartmentThe Weizmann Institute of ScienceRehovot(Israel)

Personalised recommendations