Skip to main content
Log in

Endothelial cells as part of a vascular oxygen-sensing system: Hypoxia-induced release of autacoids

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Higher developed organisms are equipped with many central and local control mechanisms, which enable an adequate blood and oxygen supply to tissues over a wide range of demands. Global adaptive responses include changes in the circulatory and ventilatory system as well as increases in the oxygen carrying capacity of the blood. At the level of the specialized organs there exist additional control systems for the regulation of local blood flow. Most systems make use of highly specialized cells which are able to sense the oxygen partial pressure of the transport medium, blood, and within the tissues. In the past years, it has been shown that the vascular endothelium lining the entire circulatory system can actively modulate the vascular tone and platelet functions by the release of autacoids, among them prostacyclin and endothelium-derived nitric oxide (EDRF). Recent experiments demonstrate that the release of EDRF is\(P_{O_2 } \)-dependent, which suggests that endothelial cells may act as functional local oxygen sensors within the vascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aw, T. Y., and Jones, D. P., ATP concentration gradients in cytosol of liver cells during hypoxia. Am. J. Physiol.249 (1985) C385–C392.

    Article  CAS  PubMed  Google Scholar 

  2. Bassenge, E., and Busse, R., Endothelial modulation of coronary tone. Prog. Cardiovasc. Dis.30 (1988) 349–380.

    Article  CAS  PubMed  Google Scholar 

  3. Bauer, C., and Kurtz, A., Oxygen sensing in the kidney and its relation to erythropoietin production. A. Rev. Physiol.51 (1989) 845–856.

    Article  CAS  Google Scholar 

  4. Berne, R. M., and Rubio, R., Circulatory effects of tissue oxygen tension sensors, in: Tissue Hypoxia and Ischemia, pp. 163–174. Eds M. Reivich, R. Coburn, S. Lahiri and B. Chance. Plenum Press, New York-London 1977.

    Chapter  Google Scholar 

  5. Bevilacqua, M. P., and Gimbrone, M. A. Jr, Inducible endothelial functions in inflammation and coagulation. Semin. Thromb. Hemost.13 (1987) 425–433.

    Article  CAS  PubMed  Google Scholar 

  6. Borda, L. J., Shuchleib, R., and Henry, P. D., Hypoxic contraction of isolated canine coronary artery. Mediation by potassium-dependent exocytosis of norepinephrine. Circ. Res.46 (1980) 870–879.

    Article  CAS  PubMed  Google Scholar 

  7. Busse, R., Förstermann, U., Matsuda, H., and Pohl, U., The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflügers Arch.401 (1984) 77–83.

    Article  CAS  PubMed  Google Scholar 

  8. Busse, R., Trogisch, G., and Bassenge, E., The role of endothelium in the control of vascular tone. Basic Res. Cardiol.80 (1985) 475–490.

    Article  CAS  PubMed  Google Scholar 

  9. Busse, R., Ogilvie, A., and Pohl, U., Vasomotor activity of diadenosine triphosphate and diadenosine tetraphosphate in isolated arteries. Am. J. Physiol.254 (1988) H828–H832.

    CAS  PubMed  Google Scholar 

  10. Busse, R., and Mülsch, A., Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett.265 (1990) 133–136.

    Article  CAS  PubMed  Google Scholar 

  11. Coburn, R. F., Grubb, B., and Aronson, R. D., Effect on cyanide on oxygen tension-dependent mechanical tension in rabbit aorta. Circ. Res.44 (1979) 368–378.

    Article  CAS  PubMed  Google Scholar 

  12. Detar, R., Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction. Am. J. Physiol.238 (1980) H761–H769.

    CAS  PubMed  Google Scholar 

  13. DiCorleto, P. E., Cultured endothelial cells produce multiple growth factors for connective tissue cells. Exp. Cell Res.153 (1984) 167–172.

    Article  CAS  PubMed  Google Scholar 

  14. Duling, B. R., and Berne, R. M., Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ. Res.27 (1970) 669–678.

    Article  CAS  PubMed  Google Scholar 

  15. Eyzaguirre, C., and Fidone, S. J., Transduction mechanisms in carotid body: glomus cells, putative neurotransmitters, and nerve endings. Am. J. Physiol.239 (1980) C135–C152.

    Article  CAS  PubMed  Google Scholar 

  16. Förstermann, U., Hertting, G., and Neufang, B., The importance of endogenous prostaglandins other than prostacyclin for the modulation of contractility of some rabbit blood vessels. Br. J. Pharmac.81 (1984) 623–630.

    Article  Google Scholar 

  17. Furchgott, R. F., Role of endothelium in responses of vascular smooth muscle. Circ. Res.53 (1983) 557–573.

    Article  CAS  PubMed  Google Scholar 

  18. Grote, J., Siegel, G., Zimmer, K., and Adler, A., The influence of oxygen tension on membrane potential and tone of canine carotid artery smooth muscle. Adv. exp. Med. Biol.222 (1988) 481–487.

    Article  CAS  PubMed  Google Scholar 

  19. Harder, D. R., Sanchezferrer, C., Kauser, K., Stekiel, W. J., and Rubanyi, G. M., Pressure releases a transferable endothelial contractile factor in cat cerebral arteries. Circ. Res.65 (1989) 193–198.

    Article  CAS  PubMed  Google Scholar 

  20. Harlan, J. M., Consequences of leukocyte-vessel wall interactions in inflammatory and immune reactions. Semin. Thromb. Hemost.13 (1987) 434–444.

    Article  CAS  PubMed  Google Scholar 

  21. Hopwood, A. M., Lincoln, J., Kirkpatrick, K. A., and Burnstock, G., Adenosine 5′-triphosphate, adenosine and endothelium-derived relaxing factor in hypoxic vasodilatation of the heart. Eur. J. Pharmac.165 (1989) 323–326.

    Article  CAS  Google Scholar 

  22. Jackson, W. F., and Duling, B. R., The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies. Circ. Res.53 (1983) 515–525.

    Article  CAS  PubMed  Google Scholar 

  23. Jackson, W. F., Prostaglandins do not mediate arteriolar oxygen reactivity. Am. J. Physiol.250 (1986) H1102–H1108.

    CAS  PubMed  Google Scholar 

  24. Jackson, W. F., Lipoxygenase inhibitors block O2 responses in hamster cheek pouch arterioles. Am. J. Physiol.255 (1988) H711–H716.

    CAS  PubMed  Google Scholar 

  25. Lands, W. E. M., Sauter, J., and Stone, G. W., Oxygen requirement for prostaglandin biosynthesis. Prostaglandins Med.1 (1978) 117–120.

    Article  CAS  PubMed  Google Scholar 

  26. Longhurst, J., and Zelis, R., Cardiovascular responses to local hindlimb hypoxemia: relation to the exercise reflex. Am. J. Physiol.237 (1979) H359–H365.

    CAS  PubMed  Google Scholar 

  27. Lückhoff, A., Busse, R., Winter, I., and Bassenge, E., Characterization of vascular relaxant factor released from cultured endothelial cells. Hypertension9 (1987) 295–303.

    Article  PubMed  Google Scholar 

  28. Lückhoff, A., Pohl, U., and Busse, R., Increased free calcium in endothelial cells in response to hypoxia and restitution of normoxia. Pflügers Arch.406, Suppl. 1 (1986) R46.

    Google Scholar 

  29. Lund, N., Jorfeldt, L., and Lewis, D. H., Skeletal muscle oxygen pressure fields in healthy human volunteers. A study of the normal state and the effects of different arterial oxygen pressures. Acta anaesth. scand.24 (1980) 272–278.

    Article  CAS  PubMed  Google Scholar 

  30. Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F., Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmac. exp. Ther.232 (1985) 708–716.

    CAS  Google Scholar 

  31. Moncada, S., and Vane, J. R., Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmac. Rev.30 (1979) 293–331.

    Google Scholar 

  32. Mülsch, A., Böhme, E., and Busse, R., Stimulation of soluble guanylate cyclase by endothelium-derived relaxing factor from cultured endothelial cells. Eur. J. Pharmac.135 (1987) 247–250.

    Article  Google Scholar 

  33. Mülsch, A., and Busse, R., NG-nitro-L-arginine (N5-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn-Schmiedebergs Arch. Pharmak. (1989) in press.

  34. Palmer, R. M. J., Ferrige, A. G., and Moncada, S., Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature327 (1987) 524–526.

    Article  CAS  PubMed  Google Scholar 

  35. Palmer, R. M. J., Ashton, D. S., and Moncada, S., Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature333 (1988) 664–666.

    Article  CAS  PubMed  Google Scholar 

  36. Pearson, J. D., Carleton, J. S., and Gordon, J. L., Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth muscle cells in culture. Biochem. J.190 (1980) 421–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pohl, U., Busse, R., and Kessler, M., Vascular resistance and tissue\(P_{O_2 } \) in skeletal muscle during perfusion with hypoxic blood, in: Cardiovascular System Dynamics, pp. 521–530. Eds T. Kenner, R. Busse and H. Hinghofer-Szalkay, Plenum Press, New York-London 1982.

    Chapter  Google Scholar 

  38. Pohl, U., and Busse, R., Reduced nutritional blood flow in autoperfused rabbit hindlimbs following inhibition of endothelial vasomotor function, in: Resistance Arteries, pp. 10–16. Eds W. Halpern, B. Pegram, J. Brayden, K. Mackey, M. McLaughlin and G. Osol. Perinatology Press, Ithaca, New York 1988.

    Google Scholar 

  39. Pohl, U., and Busse, R., Hypoxia stimulates the release of endothelium-derived relaxant factor (EDRF). Am. J. Physiol.256 (1989) H1595–H1600.

    CAS  PubMed  Google Scholar 

  40. Pohl, U., Galla, T., and Meßmer, K., Evidence for a role of EDRF in the hamster skin microcirculation: inhibitory effects of L-nitroarginine (abstract). Int. J. Microcirc.8 (1989).

  41. Rees, D. D., Palmer, R. M., and Moncada, S., Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc. natl Acad. Sci. USA86 (1989) 3375–3378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rubanyi, G. M., and Vanhoutte, P. M., Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol.364 (1985) 45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rubanyi, G. M., and Vanhoutte, P. M., Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol.250 (1986) H822–H827.

    CAS  PubMed  Google Scholar 

  44. Stern, D. M., Carpenter, B., and Nawroth, P. P., Endothelium and the regulation of coagulation. Path. Immun.5 (1986) 29–36.

    Article  CAS  Google Scholar 

  45. Whatley, R. E., Zimmerman, G. A., McIntyre, T. M., Taylor, R., and Prescott, S. M., Production of platelet-activating factor by endothelial cells. Semin. Thromb. Hemost.13 (1987) 445–453.

    Article  CAS  PubMed  Google Scholar 

  46. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masak, T., A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature332 (1988) 411–415.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, U. Endothelial cells as part of a vascular oxygen-sensing system: Hypoxia-induced release of autacoids. Experientia 46, 1175–1179 (1990). https://doi.org/10.1007/BF01936931

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01936931

Key words

Navigation