Experientia

, Volume 46, Issue 11–12, pp 1160–1162 | Cite as

Contribution of diffusion to the oxygen dependence of energy metabolism in cells

  • D. F. Wilson
Reviews

Conclusion

In suspensions of normally respiring human neuroblastoma cells, respiration has an oxygen dependence similar to that of suspensions of isolated mitochondria in medium with a comparable phosphorylation state ratio. When mitochondrial oxidative phosphorylation is uncoupled, the metabolically imposed oxygen dependence is very small. The respiration of uncoupler treated cells at limiting oxygen pressures is indicative of the diffusion induced oxygen pressure difference between the extracellular medium and the mitochondria. This P50 is proportional to the cellular respiratory rate, with a value of 0.15 Torr for the respiratory rate of normal neuroblastoma cells. The oxygen pressure difference between the cytoplasm surrounding the mitochondria and the mitochondria is probable only a few tens of milliTorr.

Keywords

Oxygen Respiration Respiratory Rate Energy Metabolism Neuroblastoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, A. Jr, and Clark, P. A. A., Local oxygen gradients near isolated mitochondria. Biophys. J.48 (1985) 931–938.PubMedGoogle Scholar
  2. 2.
    Clark, A. Jr, Clark, P. A. A., Connett, R. J., Gayeski, T. E. J., and Honig, C. R., How large is the drop in\(P_{O_2 } \) between cytosol and mitochondrion? Am. J. Physiol.252 (1987) C583–C587.PubMedGoogle Scholar
  3. 3.
    Erecinska, M., Wilson, D. F., and Nishiki, K., Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am. J. Physiol.234 (1978) C82–C89.PubMedGoogle Scholar
  4. 4.
    Gayeski, T. E. J., Connett, R. J., and Honig, C. R., The minimum intracellular\(P_{O_2 } \) for maximal cytochrome turnover in red muscle in situ. Am. J. Physiol.2523 (1987) H906–H915.Google Scholar
  5. 5.
    Jones, D. P., Intracellular diffusion gradients of O2 and ATP. Am. J. Physiol.250 (1987) C663–C675.Google Scholar
  6. 6.
    Jones, D. P., and Kennedy, F. G., Intracellular oxygen supply during hypoxia. Am. J. Physiol.243 (1982) C247–C253.PubMedGoogle Scholar
  7. 7.
    Katz, I. R., Wittenberg, J. B., and Wittenberg, B. A., Monoamine oxidase, an intracellular probe of oxygen pressure in isolated cardiac myocytes. J. biol. Chem.259 (1984) 7504–7509.PubMedGoogle Scholar
  8. 8.
    Robiolio, M., Rumsey, W. L., and Wilson, D. F., Oxygen diffusion and mitochondrial respiration in neuroblastoma cells. Am. J. Physiol.256 (1989) C1207–C1213.PubMedGoogle Scholar
  9. 9.
    Vanderkooi, J. M., and Wilson, D. F., A new method for measuring oxygen in biological systems, in: Oxygen Transport to Tissue VIII, pp. 189–193. Ed. I. A. Longmuir. Plenum Press, New York 1986.Google Scholar
  10. 10.
    Vanderkooi, J. M., Maniara, G., Green, T. J., and Wilson, D. F., An optical method for measurement of dioxygen based upon quenching of phosphorescence. J. biol. Chem.262 (1987) 5476–5482.PubMedGoogle Scholar
  11. 11.
    Wilson, D. F., Regulation of in vivo mitochondrial oxidative phosphorylation, in: Membranes and Transport, vol. 1, pp. 349–355. Ed. A. N. Martonosi, Plenum Press, New York 1982.Google Scholar
  12. 12.
    Wilson, D. F., and Erecinska, M., Effect of oxygen concentration on cellular metabolism. Chest88 (1985) 229–232.Google Scholar
  13. 13.
    Wilson, D. F., Erecinska, M., Drown, C., and Silver, I. A., The oxygen dependence of cellular energy metabolism. Archs Biochem. Biophys.195 (1979a) 485–493.CrossRefGoogle Scholar
  14. 14.
    Wilson, D. F., Owen, C. S., and Erecinska, M., Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model. Archs Biochem. Biophys.195 (1979b) 494–504.CrossRefGoogle Scholar
  15. 15.
    Wilson, D. F., Rumsey, W. L., Green, T. J., and Vanderkooi, J. M., The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. biol. Chem.263 (1988) 2712–2718.PubMedGoogle Scholar
  16. 16.
    Wilson, D. F., Vanderkooi, J. M., Green, T. J., Maniara, G., DeFeo, S. P., and Bloomgarden, D. C., A versatile and sensitive method for measuring oxygen, in: Oxygen Transport to Tissue IX, pp. 71–77. Eds I. A. Silver and A. Silver, Plenum Press, New York 1987.Google Scholar
  17. 17.
    Wittenberg, B. A., and Wittenberg, J. B., Oxygen pressure gradients in isolated cardiac myocytes. J. biol. Chem.260 (1985) 6548–6554.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1990

Authors and Affiliations

  • D. F. Wilson
    • 1
  1. 1.Department of Biochemistry and Biophysics, Medical SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations