Skip to main content
Log in

Eucaryotic codes

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

This article is a review of the rules used by eucaryotic cells to translate a nuclear messenger RNA into a polypeptide chain. The recent observation that these rules are not identical in two species of a same phylum indicates that they have changed during the course of evolution. Possible scenarios for such changes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, C. W., and Buzash-Pollert, E., Can ACG serve as an initiation codon for protein synthesis in eucaryotic cells? Molec. cell. Biol.5 (1985) 3621–3624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aoyama, T., Hirayama, T., Tamamoto, S., and Oka, A., Putative start codon TTG for the regulatory protein virG of the hairy-root-inducing plasmid pRiA4. Gene78 (1989) 173–178.

    Article  CAS  PubMed  Google Scholar 

  3. Barahona, I., Soares, H., Cyrne, L., Penque, D., Denoulet, P., and Rodrigues-Pousada, C., Sequence of one α- and two β-tubulin genes ofTetrahymena pyriformis. J. molec. Biol.202 (1988) 365–382.

    Article  CAS  PubMed  Google Scholar 

  4. Baroin, A., Perasso, R., Qu, L., Brugerolle, G., Bachelleric, J. P., and Adoutte, A., Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc. natl. Acad. Sci. USA85 (1988) 3474–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Becerra, S. P., Rose, J. A., Hardy, M., Baroudy, B. M., and Anderson, C. W., Direct mapping of adeno-associated virus capsid proteins B and C: a possible ACG initiation codon. Proc. natl Acad. Sci. USA82 (1985) 7919–7923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beier, H., Barciszewska, M., and Sickinger, H., The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J.3 (1984) 1091–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beier, H., Barciszewska, M., Krupp, G., Mitnacht, R., and Gross, H. J., UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs tyr with suppressor activity from tobacco plants. EMBO J.3 (1984) 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beier, H., Mundry, K. W., and Issinger, O. G., In vivo and in vitro translation of the RNAs of four tobamoviruses. Intervirology14 (1980) 292–299.

    Article  CAS  PubMed  Google Scholar 

  9. Bienz, M., Kubli, E., Kohli, J., de Henau, S., Huez, G., Marbaix, G., and Grosjean, H., Usage of three termination codons in a single eucaryotic cell, theXenopus laevis oocyte. Nucl. Acids Res.9 (1981) 3835–3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bienz, M., and Kubli, E., Wild type Tyr tRNAG reads the TMV RNA stop codon but Q base modified tyr tRNAQ does not. Nature294 (1981) 188–190.

    Article  CAS  PubMed  Google Scholar 

  11. Bjork, G. R., Ericson, J. U., Gustafson, C. E. D., Hagerval, T. G., Jonsson, Y. H., and Wikstrom, P. M., Transfer RNA modification. A. Rev. Biochem.56 (1987) 263–287.

    Article  CAS  Google Scholar 

  12. Caron, F., and Meyer, E., DoesParamecium primaurelia use a different genetic code in its macronucleus? Nature314 (1985) 185–188.

    Article  CAS  PubMed  Google Scholar 

  13. Chambers, I., Frampton, J., Goldfarb, P., Affara, N., McBain, W., and Harrison, P. R., The structure of the mouse glutathione peroxydase gene: the selenocysteine in the active site is encoded by the termination codon. TGA. EMBO J.5 (1986) 1221–1227.

    Article  CAS  PubMed  Google Scholar 

  14. Chang, L. J., Pryciak, P., Ganem, D., and Varmus, H. E., Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature337 (1989) 364–368.

    Article  CAS  PubMed  Google Scholar 

  15. Cigan, A. M., and Donahue, T. F., Sequence and structural features associated with translation initiator regions in yeast: a review. Gene59 (1987) 1–18.

    Article  CAS  PubMed  Google Scholar 

  16. Cigan, A. M., Feng, L., and Donahue, T. F., tRNAi meth functions in directing the scanning ribosome to the start site of translation. Science242 (1988) 93–97.

    Article  CAS  PubMed  Google Scholar 

  17. Clements, J. M., Laz, T. M., and Sherman, F., Efficiency of translation initiation by non-AUG codons inSaccharomyces cerevisiae. Molec. cell. Biol.8 (1988) 4533–4536.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Craigen, W., and Caskey, C. T., Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc. natl Acad. Sci. USA82 (1985) 3616–3620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Craigen, W., and Caskey, C. T., Expression of peptide chain release factor 2 requires high efficiency frameshift. Nature322 (1986) 273–275.

    Article  CAS  PubMed  Google Scholar 

  20. Craigen, W., and Caskey, C. T., Translational frameshifting: where will it stop? Cell50 (1987) 1–2.

    Article  CAS  PubMed  Google Scholar 

  21. Crick, F. H. C., The origin of the genetic code. J. molec. Biol.38 (1968) 367–379.

    Article  CAS  PubMed  Google Scholar 

  22. Curran, J., and Kolakofsky, D., Scanning independent ribosomal initiation of the Sendai virus X protein. EMBO J.7 (1988) 2869–2874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dasso, M. C., and Jackson, R. J., Efficient initiation of mammalian translation at a CUC codon. Nucl. Acids Res.17 (1989) 6485–6497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diamond, A., Dudock, B., and Hatfield, D., Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Cell25 (1981) 497–506.

    Article  CAS  PubMed  Google Scholar 

  25. Doerig, R. E., Suter, B., Gray, M., and Kubli, E., Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gene. EMBO J.7 (1988) 2579–2584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engelberg-Kulka, H., and Schoulaker-Schwarz, R. A., flexible genetic code, or why does selenocysteine have no unique codon? TIBS13 (1988) 419–421.

    CAS  PubMed  Google Scholar 

  27. Feng, Y., Hatfield, D. L., Rein, A., and Levin, J. G., Translational readthrough of the murine leukemia virus gag gene amber codon does not require virus-induced alteration of tRNA. J. Virol.63 (1989) 2405–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Flower, A. M., and Mchenry, C. S., The γ-subunit of DNA polymerase III holoenzyme ofEscherichia coli is produced by ribosomal frameshifting. Proc. natl Acad. Sci. USA87 (1990) 3713–3717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Forchlammer, K., Leinfelder, W., and Bock, A., Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature342 (1989) 453–456.

    Article  Google Scholar 

  30. Förster, C., Ott, G., Forchhammer, K., and Sprinzl, M., Interaction of a selenocysteine-incorporating tRNA with elongation factor Tu fromE. coli. Nucl. Acids Res.18 (1990) 487–491.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fox, T. D., Diverged genetic codes in protozoans and a bacterium. Nature314 (1985) 132–133.

    Article  CAS  PubMed  Google Scholar 

  32. Fox, T. D., Natural variation in the genetic code. A. Rev. Genet.21 (1987) 67–91.

    Article  CAS  Google Scholar 

  33. Friedberg, E. C., and Weiss, W. A., Divergent genetic codes. Nature325 (1987) 306.

    Article  CAS  PubMed  Google Scholar 

  34. Ghersa, P., Shrivastava, I. K., Perrin, L. H., Döbeli, H., Becherer, D. J., Matile, H., Meyer, B., and Certa, U., Initiation of translation at a UAG stop codon in the aldolase gene ofPlasmodium falciparum. EMBO J.9 (1990) 1645–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., and Karn, J., Nucleotide sequence of tobacco mosaic virus RNA. Proc. natl Acad. Sci. USA79 (1982) 5818–5822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldschmidt-Clermont, M., and Rahire, M., Sequence, evolution and differential expression of two genes encoding variant small subunits of ribulose biphosphate carboxylase/oxygenase inChlamydomonas reinhardtii. J. molec. Biol.191 (1986) 421–432.

    Article  CAS  PubMed  Google Scholar 

  37. Grivell, L. A., Deciphering divergent codes. Nature324 (1986) 109–110.

    Article  CAS  PubMed  Google Scholar 

  38. Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K., and Sogin, M. L., Phylogenetic relationship between chlorophytes, chrysophites and oomycetes. Proc. natl Acad. Sci. USA84 (1987) 5823–5827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hann, S. R., King, M. W., Bentley, D. L., Anderson, C. W., and Eisenman, R. N., A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas. Cell52 (1988) 185–195.

    Article  CAS  PubMed  Google Scholar 

  40. Hanyu, N., Kuchino, Y., and Nishimura, S., Dramatic events in ciliate evolution: alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in twoTetrahymena tRNAsGln. EMBO J.5 (1986) 1307–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harper, D. S., and Jahn, C. L., Differential use of termination codons in higher eucaryotes. Proc. natl Acad. Sci. USA86 (1989) 3252–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hatfield, D., Suppression of termination codons in higher eucaryotes. TIBS10 (1985) 201–204.

    CAS  Google Scholar 

  43. Hatfield, D., Diamond, A., and Dudock, B., Ipal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. Proc. natl Acad. Sci. USA79 (1982) 6215–6219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hatfield, D., and Oroszlan, S., The where, what and how of ribosomal frameshifting in retroviral protein synthesis. TIBS15 (1990) 186–190.

    CAS  PubMed  Google Scholar 

  45. Hatfield, D., and Rice, M., Aminoacyl-tRNA (anticodon): codon adaptation in human and rabbit reticulocytes. Biochem. Int.13 (1986) 835–842.

    CAS  PubMed  Google Scholar 

  46. Helftenbein, E., Nucleotide sequence of a macronuclear DNA molecule for α-tubulin from the ciliateStylonichia lemnae. Nucl. Acids Res.13 (1985) 415–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herrick, G., Hunter, D., Williams, K., and Kotter, K., Alternate processing during development of a macronuclear chromosome family inOxytricha fallax. Genes Develop.1 (1987) 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  48. Hieter, P., Pridmore, D., Hegemann, J. H., Thomas, M., Davis, R. W., and Philippsen, P., Functional selection and analysis of yeast centromeric DNA. Cell42 (1985) 913–921.

    Article  CAS  PubMed  Google Scholar 

  49. Hinnebusch, A. G., Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. TIBS15 (1990) 148–152.

    CAS  PubMed  Google Scholar 

  50. Hinnebusch, A. G., Jackson, B. M., and Mueller, P. P., Evidence for regulation of reinitiation in translational control of GCN4 mRNA. Proc. natl Acad. Sci. USA85 (1988) 7279–7283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Horowitz, S., and Gorovsky, M. A., An unusual genetic code in nuclear genes ofTetrahymena. Proc. natl. Acad. Sci. USA82 (1985) 2452–2455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hosbach, H. A., and Kubli, E., Transfer RNA in agingDrosophila: II. Isoacceptor patterns. Mech. Aging Dev.10 (1979) 141–149.

    Article  CAS  PubMed  Google Scholar 

  53. Huang, W. M., Ao, S., Casjens, S., Orlandi, R., Zeikus, R., Weiss, R., Winge, D., and Fang, M., A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science239 (1988) 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  54. Hunter, W. N., Brown, T., Anand, N. N., and Kennard, O., Structure of an adenosine-cytosine base pair in DNA and its implications for mismatch repair. Nature320 (1986) 552–555.

    Article  CAS  PubMed  Google Scholar 

  55. Jacks, T., Madhani, H. D., Masiarz, F. R., and Varmus, H. E., Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell55 (1988) 447–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jackson, R. J., Picornaviruses break the rules. Nature334 (1988) 292–293.

    Article  CAS  PubMed  Google Scholar 

  57. Jang, S. K., Krausslich, H. G., Nicklin, M. J. H., Duke, G. M., Palmenberg, A. C., and Wimmer, E., A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol.62 (1988) 2636–2643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jukes, T. H., Osawa, S., Muto, A., and Lehman, N., Evolution of anticodons: variations in the genetic code. Cold Spring Harbor Symp.52 (1987) 769–776.

    Article  CAS  Google Scholar 

  59. Kawaguchi, Y., Honda, H., Taniguchi-Morimura, J., and Iwasaki, S., The codon CUG is read as serine in an asporogenic yeastCandida cylindracea. Nature341 (1989) 164–166.

    Article  CAS  PubMed  Google Scholar 

  60. Kersten, H., On the biological significance of modified nucleosides in tRNA. Prog. nucl. Acid Res.31 (1984) 59–114.

    Article  CAS  Google Scholar 

  61. Kirkwood, T. B. L., Rosenberger, R. F., and Galas, D. J., Accuracy in Molecular Processes. Its Control and Relevance to Living Organisms. Chapman and Hall, London 1986.

    Book  Google Scholar 

  62. Kohli, J., and Grosjean, H., Use of three termination codons: compilation and analysis of the known eukaryotic and prokaryotic translation termination sequences. Molec. gen. Genet.182 (1981) 430–439.

    Article  CAS  PubMed  Google Scholar 

  63. Kozak, M., An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res.15 (1987) 8125–8148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kozak, M., At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. molec. Biol.196 (1987) 947–950.

    Article  CAS  PubMed  Google Scholar 

  65. Kozak, M., Bifunctional messenger RNAs in eukaryotes. Cell47 (1986) 481–483.

    Article  CAS  PubMed  Google Scholar 

  66. Kozak, M., Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiol. Rev.47 (1983) 1–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kozak, M., Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Molec. cell. Biol.9 (1989) 5073–5080.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kozak, M., Effect of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Molec. cell. Biol.7 (1987) 3438–3445.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kozak, M., Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell44 (1986) 283–292.

    Article  CAS  PubMed  Google Scholar 

  70. Kozak, M., Regulation of protein synthesis in virus-infected animal cells. Adv. Virus Res.31 (1986) 229–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kozak, M., The scanning model for translation: an update. J. Cell Biol.108 (1989) 229–241.

    Article  CAS  PubMed  Google Scholar 

  72. Kozak, M., Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucl. Acids Res.12 (1984) 3873–3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kubli, E., Codon Usage and Q-Base Modification inDrosophila melanogaster. Chromatography and Modifications of Nucleosides. Part B. Elsevier, 1990.

  74. Kuchino, Y., Beier, H., Akita, N., and Nishimura, S., Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia virus. Proc. natl Acad. Sci. USA84 (1987) 2668–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuchino, Y., Hanyu, N., Tashiro, F., and Nishimura, S.,Tetrahymena thermophila tRNA and its gene that corresponds to UAA termination codon. Proc. natl Acad. Sci. USA82 (1985) 4758–4762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, B. J., Rajagopalan, M., Kim, Y. S., Jacobson, K. B., and Hatfield, D., Selenocysteine tRNA(Ser)Sec gene is ubiquitous within the animal kingdom. Molec. cell. Biol.10 (1990) 1940–1949.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, B. J., Worland, P. J., Davis, J. N., Stadtman, T., and Hatfield, D. L., Identification of a selenocysteyl-tRNAser in mammalian cells that recognizes the nonsense codon, UGA. J. biol. Chem.264 (1989) 9724–9727.

    Article  CAS  PubMed  Google Scholar 

  78. Lee, C. C., Craigen, W. J., Muzni, D. M., Harlow, E., and Caskey, C. T., Cloning and expression of a mammalian peptide chain release factor with sequence similarity to tryptophanyl-tRNA synthetases. Proc. natl Acad. Sci. USA87 (1990) 3508–3512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E., and Böck, A., In vitro synthesis of selenocysteinyl-tRNAUCA from seryl-tRNAUCA: involvement and characterization of the selD gene product. Proc. natl Acad. Sci. USA87 (1990) 543–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leinfelder, W., Stadtman, T. C., and Bock, A., Occurrence in vivo of selenocysteyl-tRNAser inEscherichia coli. J. biol. Chem.264 (1989) 9720–9723.

    Article  CAS  PubMed  Google Scholar 

  81. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M. A., and Bock, A., Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature331 (1988) 723–725.

    Article  CAS  PubMed  Google Scholar 

  82. Lemaire, P., Vesque, C., Schmitt, J., Stunnenberg, H., Frank, R., and Charnay, P., The serum-inducible mouse gene Krox-24 encodes a sequence-specific transcriptional activator. Molec. cell. Biol., in press.

  83. Liu, C. C., Simonsen, C., and Levinson, A. D., Initiation of translational internal AUG codons in mammalian cells. Nature309 (1984) 82–85.

    Article  CAS  PubMed  Google Scholar 

  84. Lynn, D. H., and Sogin, M. L., Assessment of phylogenetic relationship among ciliated protists using partial ribosomal RNA sequences derived from reverse transcripts. BioSystems21 (1988) 249, 254.

    Article  CAS  PubMed  Google Scholar 

  85. Mador, N., Panet, A., and Honigman, A., Translation of gag, pro and pol gene products of human T-cell leukemia virus type 2. J. Virol.63 (1989) 2400–2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martindale, D. W., Codon usage inTetrahymena and other ciliates. J. Protozool.36 (1989) 29–34.

    Article  CAS  PubMed  Google Scholar 

  87. Meerovitch, K., Pelletier, J., and Sonenberg, N., A cellular protein that binds to the 5′-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Develop.3 (1989) 1026–1034.

    Article  CAS  PubMed  Google Scholar 

  88. Meier, F., Suter, B., Grosjean, H., Keith, G., and Kubli, E., Queuosine modification of the wobble base in tRNA His influences in vivo decoding properties. EMBO J.4 (1985) 823–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mellor, J., Fulton, S. M., Dobson, M. J., Wilson, W., Kingsman, S. M., and Kingsman, A. J., A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon. Nature313 (1985) 243–246.

    Article  CAS  PubMed  Google Scholar 

  90. Meyer, E., Caron, F., and Guiard, B., Blocking of in vitro translation ofParamecium messenger RNAs is due to messenger RNA primary structure. Biochimie66 (1984) 403–412.

    Article  CAS  PubMed  Google Scholar 

  91. Meyer, E., Caron, F., and Baroin, A., Macronuclear structure of the G surface antigen gene ofParamecium primaurelia and direct expression of its repeated epitopes inEscherichia coli. Molec. cell. Biol.5 (1985) 2414–2422.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Miceli, C., La Terza, A., and Melli, M., Isolation and structural characterization of cDNA clones encoding the mating pheromone Er-1 secreted by the ciliateEuplotes raikovi. Proc. natl Acad. Sci. USA86 (1989) 3016–3020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mueller, P. P., Jackson, B. M., Miller, P. F., and Hinnebusch, A. G., The first and fourth upstream open reading frame in GCN4 mRNA have similar initiation efficiencies but respond differently in translational control to changes in length and sequence. Molec. cell. Biol.8 (1988) 5439–5447.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nanney, D. L., Experimental ciliatology. Wiley, New York 1980.

    Google Scholar 

  95. Ninio, J., Divergence in the genetic code. Biochem. System. Ecol.14 (1986) 455–457.

    Article  CAS  Google Scholar 

  96. Ninio, J., Kinetic devices in protein synthesis, DNA replication and mismatch repair. Cold Spring Harbor Symp.52 (1987) 639–645.

    Article  CAS  Google Scholar 

  97. Nishimura, S., Structure, biosynthesis and function of queuosine in tRNA. Prog. nucl. Acid Res.28 (1983) 49–73.

    Article  CAS  Google Scholar 

  98. Normanly, J., and Abelson, J., tRNA identity. A. Rev. Biochem.58 (1989) 1029–1049.

    Article  CAS  Google Scholar 

  99. Osawa, S., and Jukes, T. H., Evolution of the genetic code as affected by anticodon content. TIG4 (1988) 191–198.

    Article  CAS  PubMed  Google Scholar 

  100. Peabody, D. S., Translation initiation at an ACG triplet in mammalian cells. J. biol. Chem.262 (1987) 11847–11851.

    Article  CAS  PubMed  Google Scholar 

  101. Pelham, H. R. B., Leaky UAG termination codon in tobacco mosaic virus. Nature272 (1978) 469–471.

    Article  CAS  PubMed  Google Scholar 

  102. Pelletier, J., and Sonenberg, N., Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus. Nature334 (1988) 320–325.

    Article  CAS  PubMed  Google Scholar 

  103. Perasso, R., Baroin, A., Qu, L., Bachellerie, J. P., and Adoutte, A., Origin of the algae. Nature339 (1989) 142–144.

    Article  CAS  PubMed  Google Scholar 

  104. Prat, A., Conserved sequences flank variable tandem repeats in two alleles of the G surface protein ofParamecium primaurelia. J. molec. Biol.211 (1990) 521–535.

    Article  CAS  PubMed  Google Scholar 

  105. Prat, A., Katinka, M., Caron, F., and Meyer, E., Nucleotide sequence of theParamecium primaurelia G surface protein. A huge protein with a highly periodic structure. J. molec. Biol.189 (1986) 47–60.

    Article  CAS  PubMed  Google Scholar 

  106. Prats, H., Kaghad, M., Prats, A. C., Klagsbrun, M., Lélias, J. M., Liauzun, P., Chalon, P., Tauber, J. P., Amalric, F., Smith, J. A., and Caput, D., High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc. natl Acad. Sci. USA86 (1989) 1836–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Preer, J. R., Preer, L. B., Rudman, B. M., and Barnett, A. J., Deviation from the universal code shown by the gene for surface protein 51A inParamecium. Nature314 (1985) 188–190.

    Article  CAS  PubMed  Google Scholar 

  108. Prive, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S., Kopka, M. L., and Dickerson, R. E., Helix geometry, hydration, and G-A mismatch in a B-DNA decamer. Science238 (1987) 498–504.

    Article  CAS  PubMed  Google Scholar 

  109. Pure, G. A., Robinson, G. W., Naumovski, L., and Friedberg, E. C., Partial suppression of an ochre mutation inSacchromyces cerevisiae by multicopy plasmids containing a normal yeast tRNAgln gene. J. molec. Biol.183 (1985) 31–42.

    Article  CAS  PubMed  Google Scholar 

  110. Qu, L., Perasso, R., Baroin, A., Brugerolle, G., Bachellerie, J. P., and Adoutte, A., Molecular evolution of the 5′-terminal domain of largesubunit rRNA from lower eucaryotes. A broad phylogeny covering photosynthetic and non-photosynthetic protists. BioSystems21 (1988) 203–208.

    Article  CAS  PubMed  Google Scholar 

  111. Rinaldy, A. R., Westhoff, P., Jauker, F., Seyfert, H. M., and Cleffmann, G., Properties of total and poly(A)+RNA from exponentially growing and from resting cultures ofTetrahymena thermophila. Exp. Cell Res.134 (1981) 417–423.

    Article  CAS  PubMed  Google Scholar 

  112. Schlicht, H. J., Radziwill, G., and Schaller, H., Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core-polymerase fusion proteins. Cell56 (1989) 85–92.

    Article  CAS  PubMed  Google Scholar 

  113. Schneider, S. U., Leible, M. B., and Yang, X., Strong homology between the small subunit of ribulose-1, 5-biphosphate carboxylase/oxygenase of two species ofAcetabularia. Molec. gen. Genet.218 (1989) 445–452.

    Article  CAS  PubMed  Google Scholar 

  114. Schoeman, R. L., and Schweiger, H. G., Gene expression inAcetabularia. II. Analysis of in vitro translation products. J. Cell Sci.58 (1982) 35–48.

    Article  Google Scholar 

  115. Schon, A., Bock, A., Ott, G., Sprinzl, M., and Söll, D., The selenocysteine-inserting opal suppressor tRNA fromE. coli is highly unusual in structure and modification. Nucl. Acids Res.17 (1989) 7159–7165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sedivy, J. M., Capone, J. P., RajBhandary, U. L., and Sharp, P. A., An inducible mammalian amber suppressor: propagation of a poliovirus mutant. Cell50 (1987) 379–389.

    Article  CAS  PubMed  Google Scholar 

  117. Söll, D., Enter a new amino acid. Nature331 (1988) 662–663.

    Article  PubMed  Google Scholar 

  118. Stadtman, T. C., Selenium-dependent enzymes. A. Rev. Biochem.49 (1980) 93–110.

    Article  CAS  Google Scholar 

  119. Stadtman, T. C., Specific occurrence of selenium in enzymes and amino acid tRNAs. FASEB J.1 (1987) 375–379.

    Article  CAS  PubMed  Google Scholar 

  120. Syvanen, M., Cross-species gene transfer: a major factor in evolution? TIG2 (1986) 63–66.

    Article  CAS  Google Scholar 

  121. Trifonov, E. N., Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16S rRNA nucleotide sequences. J. molec. Biol.194 (1987) 643–652.

    Article  CAS  PubMed  Google Scholar 

  122. Tsuchihashi, Z., and Kornberg, A., Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc. natl Acad. Sci. USA87 (1990) 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Valle, R. P. C., Etude de la suppression naturelle de codons de terminaison chez les eucaryotes supérieurs: modèles viraux et synthétiques, tRNA suppresseurs et mécanismes de régulation. Thèse de Doctorat d'Université Paris 1989.

  124. Valle, R. P. C., and Haenni, A. L., Regulation of peptide chain termination in higher eucaryotes; in: Translation in Eucaryotes. Ed. Hans Trachsel. Tedford Press, Caldwell, N.J. 1990 in press.

    Google Scholar 

  125. Valle, R. P. C., and Morch, M. D., Stop making sense. FEBS Letters235 (1988) 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Weiss, W. A., and Friedberg, E. C., Normal yeast tRNAgln can suppress amber codons and is encoded by an essential gene. J. molec. Biol.192 (1986) 725–735.

    Article  CAS  PubMed  Google Scholar 

  127. Weissenbach, J., Dirheimer, G., Falcoff, R., Sanceau, J., and Falcoff, E., Yeast tRNAleu (anticodon UAG) translates all six leucine codons in extracts from interferon treated cells. FEBS Letters82 (1977) 71–76.

    Article  CAS  PubMed  Google Scholar 

  128. Wilson, W., Braddock, M., Adams, S. E., Rathjen, P. D., Kingsman, S. M., and Kingsman, A. J., HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell55 (1988) 1159–1169.

    Article  CAS  PubMed  Google Scholar 

  129. Wilson, W., Malim, M. H., Mellor, J., Kingsman, A. J., and Kingsman, S. M., Expression strategies of the yeast retrotransposon Ty: a short sequence directs ribosomal frameshifting. Nucl. Acids Res.14 (1986) 7001–7016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Woese, C. R., The Genetic Code. Harper & Row, New York 1967.

    Google Scholar 

  131. Yamada, K., and Machida, H., Nippon Nogeikagaku Kaishi36 (1962) 858–860.

    Article  CAS  Google Scholar 

  132. Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S., UGA is read as tryptophan inMycoplasma capricolum. Proc. natl Acad. Sci. USA82 (1985) 2306–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yoshinaka, Y., Katoh, I., Copeland, T. D., and Oroszlan, S., Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc. natl Acad. Sci. USA82 (1985) 1618–1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zinoni, F., Birkman, A., Stadtman, T. C., and Bock, A., Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase fromEscherichia coli. Proc. natl Acad. Sci. USA83 (1986) 4650–4654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, F. Eucaryotic codes. Experientia 46, 1106–1117 (1990). https://doi.org/10.1007/BF01936920

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01936920

Key words

Navigation