Skip to main content
Log in

Prokaryotic genetic code

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The prokaryotic genetic code has been influenced by directional mutation pressure (GC/AT pressure) that has been exerted on the entire genome. This pressure affects the synonymous codon choice, the amino acid composition of proteins and tRNA anticodons. Unassigned codons would have been produced in bacteria with extremely high GC or AT genomes by deleting certain codons and the corresponding tRNAs. A high AT pressure together with genomic economization led to a change in assignment of the UGA codon, from stop to tryptophan, inMycoplasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andachi, Y., Yamao, F., Muto, A., and Osawa, S., Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species inMycoplasma capricolum: Resemblance to mitochondria. J. molec. Biol.209 (1989) 37–54.

    Article  CAS  PubMed  Google Scholar 

  2. Aota, S., Gojobori, T., Ishibashi, F., Maruyama, T., and Ikemura, T., Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res.16, suppl. (1988) r315–r402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernardi, G., and Bernardi, G., Compositional constraints and genome evolution. J. molec. Evol.24 (1986) 1–11.

    Article  CAS  PubMed  Google Scholar 

  4. Bové, J. M., Carle, P., Garnier, M., Laigret, F., Renaudin, J., and Saillard, C., Molecular and cellular biology of spiroplasmas, in: The Mycoplasmas, vol. 5, pp. 243–364. Eds R. F. Whitcomb and J. G. Tully. Publishers, New York 1989.

  5. Cabrera, M., Nghiem, Y., and Miller, J. H.,MutM, a second mutator locus inEscherichia coli that generates G.C.→T.A. transversions. J. Bact.170 (1988) 5405–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cox, E. C., and Yanofsky, C., Altered base rations in the DNA of anEscherichia coli mutator strain. Proc. natl Acad. Sci. USA58 (1967) 1895–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crick, F. H. C., Codon-anticodon pairing: the wobble hypothesis. J. molec. Biol.19 (1966) 548–555.

    Article  CAS  PubMed  Google Scholar 

  8. Heckman, J. E., Sarnoff, J., Alzner-DeWeerd, B., Yin, S., and Raj Bhandary, U. L., Novel features in the genetic code and codon reading patterns inNeurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. natl Acad. Sci. USA77 (1980) 3159–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hori, H., and Osawa, S., Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Molec. Biol. Evol.4 (1987) 445–472.

    CAS  PubMed  Google Scholar 

  10. Ikemura, T., Correlation between the abundance ofEscherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. molec. Biol.146 (1981) 1–21.

    Article  CAS  PubMed  Google Scholar 

  11. Inamine, J. M., Ho, K., Loechel, S., and Hu, P., Evidence that UGA is read as tryptophan rather than stop byMycoplasma pneumoniae, Mycoplasma genitalium andMycoplasma gallisepticum. J. Bact.172 (1990) 504–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishikura, H., Murao, K., and Yamada, Y., EMBO-FEBS meeting, Strasbourg, July 1980.

  13. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., and Miyata, T., Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. natl Acad. Sci. USA86 (1989) 9355–9359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jukes, T. H., The genetic code, II. Am. Sci.53 (1965) 477–487.

    CAS  PubMed  Google Scholar 

  15. Jukes, T. H., A change in the genetic code inMycoplasma capricolum. J. molec. Evol.22 (1985) 361–362.

    Article  CAS  PubMed  Google Scholar 

  16. Jukes, T. H., and Bhushan, V., Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes. J. molec. Evol.24 (1986) 39–44.

    Article  CAS  PubMed  Google Scholar 

  17. Kagawa, Y., Nojima, H., Nukiwa, N., Ishizuka, M., Nakajima, T., Yasuhara, T., Tanaka, T., and Oshima, T., High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase ofThermus thermophilus. J. biol. Chem.259 (1984) 2956–2960.

    Article  CAS  PubMed  Google Scholar 

  18. Kimura, M., The Neutral Theory of Molecular Evolution. Cambridge University Press, 1983.

  19. Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H., Genomic organization and physical mapping of the transfer RNA genes inEscherichia coli K12. J. molec. Biol.212 (1990) 579–598.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, C. C., Timms, K. M., Trotman, C. N. A., and Tate, W. P., Isolation of a rat mitochondrial release factor. Accommondation of the changed genetic code for termination. J. biol. Chem.262 (1987) 3548–3552.

    Article  CAS  PubMed  Google Scholar 

  21. Muramatsu, T., Yokoyama, S., Horie, N., Matsuda, A., Ueda, T., Yamaizumi, Z., Kuchino, Y., Nishimura, S., and Miyazawa, T., A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA fromEscherichia coli. J. biol. Chem.263 (1988) 9261–9267.

    Article  CAS  PubMed  Google Scholar 

  22. Muto, A., and Osawa, S., The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. natl Acad. Sci. USA84 (1987) 166–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nghiem, Y., Cabrera, M., Cupples, C. G., and Miller, J. H., The mutY gene: A mutator locus inEscherichia coli that generates G:C→T:A transversions. Proc. natl Acad. Sci. USA85 (1988) 2709–2713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohama, T., Muto, A., and Osawa, S., Spectinomycin operon ofMicrococcus luteus: Evolutionary implications of organization and novel codon usage. J. molec. Evol.29 (1989) 381–395.

    Article  CAS  PubMed  Google Scholar 

  25. Ohama, T., Muto, A., and Osawa, S., Role of GC-biased mutation pressure on synonymous codon choice inMicrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Res.18 (1990) 1565–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohkubo, S., Muto, A., Kawauchi, Y., Yamao, F., and Osawa, S., The ribosomal protein gene cluster ofMycoplasma capricolum. Molec. gen. Genet.210 (1987) 314–322.

    Article  CAS  PubMed  Google Scholar 

  27. Osawa, S., and Jukes, T. H., Evolution of the genetic code as affected by anticodon content. Trends Genet.4 (1988) 191–198.

    Article  CAS  PubMed  Google Scholar 

  28. Sueoka, N., Correlation between base composition of deoxyribonucleic acid and amino acid composition of protein. Proc. natl Acad. Sci. USA47 (1961) 1141–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sueoka, N., On the genetic basis of variation and heterogeneity of DNA base composition. Proc. natl Acad. Sci. USA48 (1962) 166–169.

    Article  Google Scholar 

  30. Tanaka, R., Muto, A., and Osawa, S., Nucleotide sequence of tryptophan tRNA gene inAcholeplasma laidlawii. Nucleic Acids Res.17 (1989) 5842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S., UGA is read as tryptophan inMycoplasma capricolum. Proc. natl Acad. Sci. USA82 (1985) 2306–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamao, F., Iwagami, S., Azumi, Y., Muto, A., Osawa, S., Fujita, N., and Ishihama, A., Evolutionary dynamics of tryptophan tRNAs inMycoplasma capricolum. Molec. gen. Genet.212 (1988) 364–369.

    Article  CAS  PubMed  Google Scholar 

  33. Yokoyama, S., Watanabe, T., Murao, K., Ishikura, H., Yamaizumi, Z., Nishimura, S., and Miyazawa, T., Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc. natl Acad. Sci. USA82 (1985) 4905–4909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osawa, S., Muto, A., Ohama, T. et al. Prokaryotic genetic code. Experientia 46, 1097–1106 (1990). https://doi.org/10.1007/BF01936919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01936919

Key words

Navigation