, Volume 46, Issue 11–12, pp 1089–1096 | Cite as

The accuracy of aminoacylation — ensuring the fidelity of the genetic code

  • D. Söll
Multi-author Reviews


The fidelity of protein biosynthesis rests not only on the proper interaction of the messenger RNA codon with the anticodon of the tRNA, but also on the correct attachment of amino acids to their corresponding (cognate) transfer RNA (tRNA) species. This process is catalyzed by the aminoacyl-tRNA synthetases which discriminate with remarkable selectivity amongst many structurally similar tRNAs. The basis for this highly specific recognition of tRNA by these enzymes (also referred to as ‘tRNA identity’) is currently being elucidated by genetic, biochemical and biophysical techniques. At least two factors are important in determining the accuracy of aminoacylation: a) ‘identity elements’ in tRNA denote nucleotides in certain positions crucial for protein interactions determining specificity, and b) the occurrence in vivo of competition between synthetases for a particular tRNA which may have ambiguous identity.

Key words

trNA recognition identity aminoacylation mischarging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akins, A., and Lambowitz, A., A protein required for splicing group I introns inNeurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell50 (1987) 331–345.CrossRefPubMedGoogle Scholar
  2. 2.
    Baldwin, A. N., and Berg, P., Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J. biol. Chem.241 (1966) 839–845.PubMedGoogle Scholar
  3. 3.
    Barat, C., Lullien, V., Schatz, O., Keith, G., Nugeyre, M. T., Gruninger-Leitch, F., Barre-Sinoussi, F., LeGrice, S. F., and Darlix, J. L., HIV-1 reverse transcriptase specifically interacts with the anti-codon domain of its cognate primer tRNA. EMBO J.8 (1989) 3279–3285.PubMedGoogle Scholar
  4. 4.
    Bedouelle, H., and Winter, G., A model of synthetase/transfer RNA interaction as deduced by protein engineering. Nature320 (1986) 371–373.CrossRefPubMedGoogle Scholar
  5. 5.
    Brick, P., Bhat, T. N., and Blow, D. M., Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with tyrosyl adenylate intermediate. J. molec. Biol.208 (1989) 83–98.CrossRefPubMedGoogle Scholar
  6. 6.
    Crothers, D. M., Seno, T., and Söll, D., Is there a discriminator site in transfer RNA? Proc. natl Acad. Sci. USA69 (1972) 3063–3067.PubMedGoogle Scholar
  7. 7.
    deDuve, C., Transfer RNAs: the second genetic code. Nature333 (1988) 117–118.CrossRefPubMedGoogle Scholar
  8. 8.
    Eggertsson, G., and Söll, D., Transfer RNA-mediated suppression of termination codons inEscherichia coli. Microbiol. Rev.52 (1988) 354–374.PubMedGoogle Scholar
  9. 9.
    Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D., Primary sequence of ProRS and partition of all tRNA-synthetases into two classes, as revealed by three new sequence motifs. Nature347 (1990) 203–206.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferguson, B. Q., and Yang, D. C., Methionyl-tRNA synthetase induced 3′-terminal and delocalized conformational transition in tRNAfMet: steady-state fluorescence of tRNA with a single fluorophore. Biochemistry25 (1986) 529–539.CrossRefPubMedGoogle Scholar
  11. 11.
    Freist, W., Mechanisms of aminoacyl-tRNA synthetases: a critical consideration of recent results. Biochemistry28 (1989) 6787–6795.CrossRefPubMedGoogle Scholar
  12. 12.
    Ghysen, A., and Celis, J. E., Mischarging single and double mutants ofEscherichia coli su3 tyrosine transfer RNA. J. molec. Biol.83 (1974) 333–351.CrossRefPubMedGoogle Scholar
  13. 13.
    Hartman, P. E., and Roth, J. R., Mechanisms of suppression. Adv. Genet.17 (1973) 1–105.PubMedGoogle Scholar
  14. 14.
    Hecht, S. M., 2′-OH vs 3′-OH specificity in tRNA aminoacylation, in: Transfer RNA: Structure, Properties and Recognition, pp. 345–360. Eds P. R. Schimmel, D. Söll, and J. N. Abelson. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1979.Google Scholar
  15. 15.
    Hooper, J. L., Russell, R. L., and Smith, J. D., Mischarging in mutant tyrosine transfer RNAs. FEBS Lett.22 (1972) 149–155.CrossRefPubMedGoogle Scholar
  16. 16.
    Hou, Y.-M., and Schimmel, P., A simple structural feature is a major determinant of the identity of a transfer RNA. Nature333 (1988) 140–145.CrossRefPubMedGoogle Scholar
  17. 17.
    Hou, Y.-M., and Schimmel, P., Modeling with in vitro parameters for the elaboration of transfer RNA identity in vitro. Biochemistry28 (1989) 4942–4947.CrossRefPubMedGoogle Scholar
  18. 18.
    Inokuchi, H., Celis, J. E., and Smith, J. D., Mutant tyrosine transfer ribonucleic acids ofEscherichia coli: construction by recombination of a double mutant A1G82 chargeable with glutamine. J. molec. Biol.85 (1974) 187–192.CrossRefPubMedGoogle Scholar
  19. 19.
    Inokuchi, H., Hoben, P., Yamao, F., Ozeki, H., and Söll, D., Transfer RNA mischarging mediated by a mutantEscherichia coli glutaminyl-tRNA synthetase. Proc. natl Acad. Sci. USA81 (1984) 5076–5080.PubMedGoogle Scholar
  20. 20.
    Jakubowski, H., and Goldman, E., Quantities of individual aminoacyl-tRNA families and their turnover inEscherichia coli. J. Bact.158 (1984) 769–776.PubMedGoogle Scholar
  21. 21.
    Jasin, M., Regan, L., and Schimmel, P., Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature, Lond.306 (1983) 441–447.Google Scholar
  22. 22.
    Kim, S. H., Crystal structure of yeast tRNAPhe and general structural features of other tRNAs, in: Transfer RNA: Structure, Properties and Recognition, pp. 83–100. Eds P. R. Schimmel, D. Söll and J. N. Abelson. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1979.Google Scholar
  23. 23.
    Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H., Genomic organization and physical mapping of the transfer RNA genes inEscherichia coli K12. J. molec. Biol.212 (1990) 579–598.CrossRefPubMedGoogle Scholar
  24. 24.
    Leatherbarrow, R. J., and Fersht, A. R., Protein Engineering. Protein Engineering1 (1986) 7–16.PubMedGoogle Scholar
  25. 25.
    Loftfield, R. B., and Vanderjagt, M. A., The frequency of errors in protein biosynthesis. Biochem. J.128 (1972) 1353–1356.PubMedGoogle Scholar
  26. 26.
    McClain, W. H., and Foss, K., Changing the identity of a tRNA by introducing a G-U wobble pair near the 3′ acceptor end. Science240 (1988) 793–796.PubMedGoogle Scholar
  27. 27.
    McClain, W. H., and Nicholas, H. B. Jr, Differences between transfer RNA molecules. J. molec. Biol.194 (1987) 635–642.CrossRefPubMedGoogle Scholar
  28. 28.
    Monteilhet, C., and Blow, D. M., Binding of tyrosine, adenosine triphosphate and analogues to crystalline tyrosyl transfer RNA synthetase. J. molec. Biol.122 (1978) 407–417.CrossRefPubMedGoogle Scholar
  29. 29.
    Muramatsu, T., Nishikawa, K., Nemoto, F., Kuchino, Y., Nishimura, S., Miyazawa, T., and Yokoyama, S., Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature336 (1988) 179–181.CrossRefPubMedGoogle Scholar
  30. 30.
    Murgola, E. J., tRNA, suppression, and the code. A. Rev. Genet.19 (1985) 57–80.CrossRefGoogle Scholar
  31. 31.
    Normanly, J., and Abelson, J., Transfer RNA identity. A. Rev. Biochem.58 (1989) 1029–1049.CrossRefGoogle Scholar
  32. 32.
    Normanly, J., Ogden, R. C., Horvath, S. J., and Abelson, J., Changing the identity of a transfer RNA. Nature321 (1986) 213–219.CrossRefPubMedGoogle Scholar
  33. 33.
    O'Connor, M., Gesteland, R. F., and Atkins, J. F., tRNA hopping: enhancement by an expanded anticodon. EMBO J.8 (1989) 4315–4323.PubMedGoogle Scholar
  34. 34.
    Ozeki, H., Inokuchi, H., Yamao, F., Kodaira, M., Sakano, H., Ikemura, T., and Shimura, Y., Genetics of nonsense suppressor tRNAs inEscherichia coli, in: Transfer RNA: Biological Aspects, pp. 341–362. Eds D. Söll, J. N. Abelson and P. R. Schimmel. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1980.Google Scholar
  35. 35.
    Perona, J. J., Swanson, R. N., Rould, M. A., Steitz, T. A., and Söll, D., Structural basis for misaminoacylation by mutantE. coli glutaminyl-tRNA synthetase enzymes. Science246 (1989) 1152–1154.PubMedGoogle Scholar
  36. 36.
    Perona, J. J., Swanson, R., Steitz, T. A., and Söll, D., Overproduction and purification ofEscherichia coli tRNA2Gln and its use in crystallization of the glutaminyl-tRNA synthetase: tRNAGln complex. J. molec. Biol.202 (1988) 121–126.CrossRefPubMedGoogle Scholar
  37. 37.
    Remme, J., Margus, T., Villems, R., and Nierhaus, K. H., The third ribosomal transfer RNA-binding site, the E site, is occupied in native polysomes. Eur. J. Biochem.183 (1989) 281–284.CrossRefPubMedGoogle Scholar
  38. 38.
    Rogers, M. J., and Söll, D., Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA. Proc. natl Acad. Sci. USA85 (1988) 6627–6631.PubMedGoogle Scholar
  39. 39.
    Rouget, P., and Chapeville, F., Leucyl-tRNA synthetase. Two forms of the enzyme: relation between structural and catalytic properties. Eur. J. Biochem.23 (1971) 459–467.CrossRefPubMedGoogle Scholar
  40. 40.
    Rould, M. A., Perona, J., Söll, D., and Steitz, T., Structure ofE. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution. Science246 (1989) 1135–1142.PubMedGoogle Scholar
  41. 41.
    Rubin, J., and Blow, D. M., Amino acid activation in crystalline tyrosyl-tRNA synthetase fromBacillus stearothermophilus. J. molec. Biol.145 (1981) 489–500.CrossRefPubMedGoogle Scholar
  42. 42.
    Sampson, J. R., DiRenzo, A. B., Behlen, L. S., and Uhlenbeck, O. C., Nucleotides in yeast tRNAPhe required for the specific recognition by its cognate synthetase. Science243 (1989) 1363–1366.PubMedGoogle Scholar
  43. 43.
    Sampson, J. R., and Uhlenbeck, O. C., Biochemical and physical characterization of an unmodified yeast phenylalamine transfer RNA transcribed in vitro. Proc. natl Acad. Sci.85 (1988) 1033–1037.PubMedGoogle Scholar
  44. 44.
    Schimmel, P., Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of tRNAs. A. Rev. Biochem.56 (1987) 125–158.Google Scholar
  45. 45.
    Schön, A., Kannangara, C. G., Gough, S., and Söll, D., Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature331 (1988) 187–190.CrossRefPubMedGoogle Scholar
  46. 46.
    Schön, A., Krupp, G., Gough, S., Berry-Lowe, S., Kannangara, C. G., and Söll, D., The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature, Lond.322 (1986) 281–284.Google Scholar
  47. 47.
    Schulman, L. H., and Pelka, H., In vitro conversion of a methionine to a glutamine acceptor tRNA. Biochemistry24 (1985) 7309–7314.CrossRefPubMedGoogle Scholar
  48. 48.
    Schulman, L. H., and Pelka, H., Anticodon switching changes the identity of methionine and valine transfer RNAs. Science242 (1988) 765–768.PubMedGoogle Scholar
  49. 49.
    Seno, T., Agris, P. F., and Söll, D., Involvement of the anticodon region ofEscherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl tRNA synthetase: Alteration of the 2-thiouridine derivitives in the anticodon of the tRNAs by BrCN or sulfur deprivation. Biochim. biophys. Acta349 (1974) 328–338.PubMedGoogle Scholar
  50. 50.
    Shimura, Y., Aono, H., Ozeki, H., Sarabhai, A., Lamfrom, H., and Abelson, J., Mutant tyrosine tRNA of altered amino acid specificity. FEBS Lett.22 (1972) 144–148.CrossRefPubMedGoogle Scholar
  51. 51.
    Shoffner, J. M., Lott, M. T., Lezza, A. M. S., Seibel, P., Ballinger, S. W., and Wallace, D. C., Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell61 (1990) 931–937.CrossRefPubMedGoogle Scholar
  52. 52.
    Smith, J. D., and Celis, J. E., Mutant tyrosine transfer RNA that can be charged with glutamine. Nature New Biol.243 (1973) 66–71.PubMedGoogle Scholar
  53. 53.
    Söll, D., and Schimmel, P. R., Aminoacyl-tRNA synthetases, in: The Enzymes, vol. X, pp. 489–538. Ed. P. Boyer. Academic Press, San Francisco 1974.Google Scholar
  54. 54.
    Sprinzl, M., Hartmann, T., Meissner, F., Moll, J., and Vorderwülbecke, T., Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res.15 (1987) r53–r188.PubMedGoogle Scholar
  55. 55.
    Swanson, R., Hoben, P., Sumner-Smith, M., Uemura, H., Watson, L., and Söll, D., Accuracy of in vivo aminoacylation requires the proper balance of tRNA and aminoacyl-tRNA synthetase. Science242 (1988) 1548–1551.PubMedGoogle Scholar
  56. 56.
    Thorbjarnardottir, S., Dingermann, T., Rafnar, T., Andresson, O.S., Söll, D., and Eggertsson, G., Leucine tRNA family ofEscherichia coli: nucleotide sequence of the supP(Am) suppressor gene. J. Bact.161 (1985) 219–222.PubMedGoogle Scholar
  57. 57.
    Uemura, H., Conley, J., Yamao, F., Rogers, J., and Söll, D.,Escherichia coli glutaminyl-tRNA synthetase: a single aminoa cid replacement relaxes tRNA specificity. Protein Sequences Data Analysis1 (1988) 479–485.PubMedGoogle Scholar
  58. 58.
    Uemura, H., Rogers, M.J., Swanson, R., Watson, L., and Söll, D., Site-directed mutagenesis to fine-tune enzyme specifity. Protein Engineering2 (1988) 293–296.PubMedGoogle Scholar
  59. 59.
    Waldrop, M. M., The structure of the ‘second genetic code’. Science246 (1989) 1122.PubMedGoogle Scholar
  60. 60.
    Williamson, R. M., and Oxender, D. L., Sequence and structural similarities between the leucine-specific binding protein and leucyl-tRNA synthetase ofEscherichia coli. Proc. natl Acad. Sci. USA87 (1990) 4561–4565.PubMedGoogle Scholar
  61. 61.
    Yaniv, M., Folk, W. R., Berg, P., and Soll, L., A single modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J. molec. Biol.86 (1974) 245–260.CrossRefPubMedGoogle Scholar
  62. 62.
    Yarus, M., Translational efficiency of transfer RNAs: uses of an extended anticodon. Science218 (1982) 646–652.PubMedGoogle Scholar
  63. 63.
    Zelwer, C., Risler, J. L., and Brunie, S., Crystal structure ofEscherichia coli methionyl-tRNA synthetase at 2.5 Å resolution. J. molec. Biol.155 (1982) 63–81.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1990

Authors and Affiliations

  • D. Söll
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations