Skip to main content

Advertisement

Log in

Heavy metal accumulation by bacteria and other microorganisms

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Bacteria, and other microorganisms, exhibit a number of metabolism-dependent and-independent processes or the uptake and accumulation of heavy metals and radionuclides. The removal of such harmful substances from effluents and waste waters by microbe-based technologies may provide an alternative or additional means of metal/radionuclide recovery for economic reasons and/or environmental protection. Both living and dead cells as well as products derived from or produced by microorganisms can be effective metal accumulators and there is evidence that some biomass-based clean-up processes are economically viable. However, many aspects of metal-microbe interactions remain unexploited in biotechnology and further development and application is necessary, particularly to the problem of radionuclide release into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aiking, H., Stijnman, A., Van Garderen, C., van Heerkhuizen, H., and Van't Riet, J., Inorganic phosphate accumulation and cadmium detoxification inKlebsiella aerogenes NCTC 418 growing in continuous culture. Appl. envir. Microbiol.47 (1984) 374–377.

    Article  CAS  Google Scholar 

  2. Belliveau, B. H., Starodub, M. E., Cotter, C., and Trevors, J. T., Metal resistance and accumulation in bacteria. Biotechnol. Adv.5 (1987) 101–127.

    Article  CAS  PubMed  Google Scholar 

  3. Beveridge, T. J., and Fyfe, W. S., Metal fixation by bacterial cell walls. Can. J. Earth Sci.22 (1985) 1893–1898.

    Article  CAS  Google Scholar 

  4. Bianchi, M. E., Carbone, M. L., and Lucchini, G., Mn2+ and Mg2+ uptake in Mn-sensitive and Mn-resistant yeast strains. Plant. Sci. Lett.22 (1981) 345–352.

    Article  CAS  Google Scholar 

  5. Borst-Pauwels, G. W. F. H., Ion transport in yeast. Biochim. biophys. Acta650 (1981) 88–127.

    Article  CAS  PubMed  Google Scholar 

  6. Brierley, J. A., and Brierley, C. L., Biological accumulation of some heavy metals—biotechnological applications, in: Biomineralization and Biological Metal Accumulation, pp. 499–509. Reidel Publishing Company, Dordrecht 1983.

    Chapter  Google Scholar 

  7. Brierley, C. L., Kelly, D. P., Seal, K. J., and Best, D. J., Materials and biotechnology, in: Biotechnology, pp. 163–212. Blackwell Scientific Publications, Oxford 1985.

    Google Scholar 

  8. Brierley, J. A., Goyak, G. M., and Brierley, C. L., Considerations for commercial use of natural products for metals recovery, in: Immobilisation of Ions by Bio-sorption, pp. 105–117. Ellis Horwood, Chichester 1986.

    Google Scholar 

  9. Butt, T. R., and Ecker, D. J., Yeast metallothionein and applications in biotechnology. Microbiol. Rev.51 (1987) 351–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fisher, N. S., Accumulation of metals by marine picoplankton. Mar. Biol.87 (1985) 137–142.

    Article  CAS  Google Scholar 

  11. Fisher, N. S., Burns, K. A., Cherry, R. D., and Heyraud, M., Accumulation and cellular distribution of241Am,210Po and210Pb in two marine algae. Mar. Ecol.11 (1983) 233–237.

    Article  CAS  Google Scholar 

  12. Friis, N., and Myers-Keith, P., Biosorption of uranium and lead byStreptomyces longwoodensis. Biotechnol. Bioeng.28 (1986) 21–28.

    Article  CAS  PubMed  Google Scholar 

  13. Gadd, G. M., Fungal responses towards heavy metals, in: Microbes in Extreme Environments, pp. 83–110. Academic Press, London 1986.

    Google Scholar 

  14. Gadd, G. M., The uptake of heavy metals by fungi and yeasts: the chemistry and physiology of the process and applications for biotechnology, in: Immobilisation of Ions by Biosorption, pp. 135–147. Ellis Horwood, Chichester 1986.

    Google Scholar 

  15. Gadd, G. M., Accumulation of metals by microorganisms and algae, in: Biotechnology—A Comprehensive Treatise, vol. 6b, pp. 401–433. CVH Verlagsgesellschaft, Weinheim 1988.

    Google Scholar 

  16. Gadd, G. M., and Griffiths, A. J., Microorganisms and heavy metal toxicity. Microb. Ecol.4 (1978) 303–317.

    Article  CAS  Google Scholar 

  17. Gadd, G. M., and de Rome, L., Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol.29 (1988) 610–617.

    Article  CAS  Google Scholar 

  18. Gadd, G. M., and White, C., Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, in: Metal-Microbe Interactions, pp. 19–38. IRL Press, Oxford 1989.

    Google Scholar 

  19. Greene, B., Hosea, M., McPherson, R., Henzl, M., Alexander, M. D., and Darnall, D. W., Interaction of gold (I) and gold (III) complexes with algal biomass. Envir. Sci. Technol.20 (1986) 627–632.

    Article  CAS  Google Scholar 

  20. Horikoshi, T., Nakajima, A., and Sakaguchi, T., Uptake of uranium byChlorella vulgaris. Agric. biol. Chem.43 (1979) 617–623.

    CAS  Google Scholar 

  21. Hutchins, S. R., Davidson, M. S., Brierley, J. A., and Brierley, C. L., Microorganisms in reclamation of metals. A. Rev. Microbiol.40 (1986) 311–336.

    Article  CAS  Google Scholar 

  22. Kelly, D. P., Norris, P. R., and Brierley, C. L., Microbiological methods for the extraction and recovery of metals, in: Microbial Technology: Current State, Future Prospects, pp. 263–308. Cambridge University Press, Cambridge 1979.

    Google Scholar 

  23. Khummongkol, D., Canterford, G. A., and Fryer, C., Accumulation of heavy metals in unicellular algae. Biotechnol. Bioeng.24 (1982) 2643–2660.

    Article  CAS  PubMed  Google Scholar 

  24. Lester, J. N., Sterritt, R. M., Rudd, T., and Brown, M. J., Assessment of the role of bacterial extracellular polymers in controlling metal removal in biological waste water treatment, in: Microbiological Methods for Environmental Biotechnology, pp. 197–217. Academic Press, London 1984.

    Google Scholar 

  25. Macaskie, L. E., and Dean, A. C. R., Use of immobilised biofilm ofCitrobacter sp. for the removal of uranium and lead from aqueous flows. Enzyme Microb. Technol.9 (1987) 2–4.

    Article  CAS  Google Scholar 

  26. Macaskie, L. F., Dean, A. C. R., Cheetham, A. K., Jakeman, R. J. B., and Skarnulis, J., Cadmium accumulation by aCitrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. gen. Microbiol.133 (1987) 539–544.

    CAS  Google Scholar 

  27. Macaskie, L. E., Wates, J. M., and Dean, A. C. R., Cadmium accumulation by aCitrobacter sp. immobilized on gel and solid supports: applicability to the treatment of liquid wastes containing heavy metal cations. Biotechnol. Bioeng.30 (1987) 66–73.

    Article  CAS  PubMed  Google Scholar 

  28. Nakajima, A., and Sakaguchi, T., Selective accumulation of heavy metals by microorganisms. Appl. Microbiol. Biotechnol.24 (1986) 59–64.

    Article  CAS  Google Scholar 

  29. Nakajima, A., Horikoshi, T., and Sakaguchi, T., Ion effects on the uptake of uranium byChlorella vulgaris. Agric. biol. Chem.43 (1979) 625–629.

    CAS  Google Scholar 

  30. Sakaguchi, T., and Nakajima, A., Recovery of uranium by chitin phosphate and chitosan phosphate, in: Chitin and Chitosan, pp. 177–182. Japanese Society of Chitin and Chitosan, Tottori, Japan 1982.

    Google Scholar 

  31. Shumate, S. E., and Strandberg, G. W., Accumulation of metals by microbial cells, in: Comprehensive Biotechnology, vol. 4, pp. 235–247. Pergamon Press, New York 1985.

    Google Scholar 

  32. Strandberg, G. W., Shumate, S. E., and Parrott, J. R., Microbial cells as biosorbents for heavy metals: accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl. envir. Microbiol.41 (1981) 237–245.

    Article  CAS  Google Scholar 

  33. Tobin, J. M., Cooper, D. G., and Neufeld, R. J., Uptake of metal ions byRhizopus arrhizus biomass. Appl. envir. Microbiol.47 (1984) 821–824.

    Article  CAS  Google Scholar 

  34. Trevors, J. T., Stratton, G. W., and Gadd, G. M., Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can. J. Microbiol.32 (1986) 447–464.

    Article  CAS  PubMed  Google Scholar 

  35. Tsezos, M., Recovery of uranium from biological adsorbents-desorption equilibrium. Biotechnol. Bioeng.26 (1984) 973–981.

    Article  CAS  PubMed  Google Scholar 

  36. Tsezos, M., Absorption by microbial biomass as a process for removal of ions from process or waste solutions, in: Immobilization of Ions by Bio-sorption, pp. 201–218. Ellis Horwood, Chichester 1986.

    Google Scholar 

  37. Tsezos, M., and Volesky, B., Biosorption of uranium and throrium. Biotechnol. Bioeng.22 (1981) 583–604.

    Article  Google Scholar 

  38. Tsezos, M., and Volesky, B., The mechanism of uranium biosorption byRhizopus arrhizus. Biotechnol. Bioeng.24 (1982) 385–401.

    Article  CAS  PubMed  Google Scholar 

  39. Wainwright, M., and Grayston, S. J., Accumulation and oxidation of metal sulphides, by fungi, in: Metal-Microbe Interactions, pp. 119–130. IRL Press, Oxford 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadd, G.M. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46, 834–840 (1990). https://doi.org/10.1007/BF01935534

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935534

Key words

Navigation