Skip to main content
Log in

The effect of adhesion on survival and growth of microorganisms

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Adhesion of microorganisms to solid surfaces or water/air interfaces can significantly influence cellular metabolic activity, development and viability. Attachment is of advantage particularly for organisms growing under oligotrophic or otherwise extreme conditions. However, the ability to detach and migrate is of vital importance when prevailing conditions become too harsh or in situations of population explosion.

Adhesion can cause alterations in the physical and chemical properties of substratum surfaces as well, by means of degradation, aggregation, emulsification etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar-Or, Y., Kessel, M., and Shilo, M., Modulation of cell surface hydrophobicity in the benthic cyanobacteriumPhormidium J-1. Archs Microbiol.142 (1985) 21–27.

    CAS  Google Scholar 

  2. Bauer, W. D., Infection of legumes by Rhyzobia. A. Rev. Plant Physiol.32 (1981) 407–449.

    CAS  Google Scholar 

  3. Blanchard, D. C., and Syzdek, M., Mechanism for the water-to-air transfer and accumulation of bacteria. Science170 (1970) 626–628.

    CAS  PubMed  Google Scholar 

  4. Booth, W. E., Algae as pioneers in plant succession and their importance in erosion control. Ecology22 (1941) 38–46.

    Google Scholar 

  5. Bright, J. J., and Fletcher, M., Amino acid assimilation and electron transport system activity in attached and free-living marine bacteria. Appl. envir. Microbiol.45 (1983) 818–825.

    CAS  Google Scholar 

  6. Brock, T. D., Effect of water potential on aMicrocoleus (cyanophyceae) from a desert crust. J. Phycol.11 (1975) 316–320.

    Google Scholar 

  7. Burton, G. A., Gunnison, D., and Lanza, G. R., Survival of pathogenic bacteria in various freshwater sediments. Appl. envir. Microbiol.53 (1987) 633–638.

    Google Scholar 

  8. Buzer, J. S., Dohmeier, R. A., and Du Toit, D. R., The survival of algae in dry soils exposed to high temperatures for extended time periods. Phycologia24 (1985) 249–251.

    Google Scholar 

  9. Characklis, W. G., and Cooksey, K. E., Biofilms and microbial fouling. Adv. appl. Microbiol.29 (1983) 93–138.

    CAS  Google Scholar 

  10. Cohen, Y., and Rosenberg, E. (Eds), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Am. Soc. Microbiol., Washington 1989.

    Google Scholar 

  11. Dahlback, B., Hermansson, M., Kjelleberg, S., and Norkrans, B., The hydrophobicity of bacteria—an important factor in their adhesion at the air-water interface. Archs Microbiol.128 (1981) 267–270.

    CAS  Google Scholar 

  12. Davies, J. T., and Rideal, E. K., Interfacial phenomena. Academic Press, London 1963.

    Google Scholar 

  13. Diab, S., and Shilo, M., Effect of adhesion to particles on the survival and activity ofNitrosomonas sp. andNitrobacter sp. Archs Microbiol.150 (1988) 387–393.

    CAS  Google Scholar 

  14. Fletcher, M., A microautoradiographic study of the activity of attached and free-living bacteria. Archs Microbiol.122 (1979) 271–274.

    Google Scholar 

  15. Fletcher, M., Measurement of glucose utilization byPseudomonas fluorescens that are free-living and that are attached to surfaces. Appl. envir. Microbiol.52 (1986) 672–676.

    CAS  Google Scholar 

  16. Guerin, W. F., Phenanthrene degradation by estuarine surface microlayer and bulk water microbial populations. Microb. Ecol.17 (1989) 89–104.

    CAS  PubMed  Google Scholar 

  17. Hattori, R., Growth and spore formation ofBacillus subtilis adsorbed on an anion-exchange resin. J. gen. appl. Microbiol.22 (1976) 215–226.

    Google Scholar 

  18. Hermansson, M., and Dahlback, B., Bacterial activity at the air/water interface. Microb. Ecol.9 (1983) 317–328.

    CAS  PubMed  Google Scholar 

  19. Howell, J. A., and Atkinson, B., Sloughing of microbial film in trickling filters. Water Res.10 (1976) 307–315.

    Google Scholar 

  20. Jones, J. G., and Simon, B. M., Nutritional strategy of a benthic filamentous bacterium. Microb. Ecol.12 (1986) 323–330.

    CAS  PubMed  Google Scholar 

  21. Kefford, B., Humphrey, B. A., and Marshall, K. C., Adhesion: a possible survival strategy for Leptospires under starvation conditions. Curr. Microbiol.13 (1986) 247–250.

    CAS  Google Scholar 

  22. Kefford, B., Kjelleberg, S., and Marshall, K. C., Bacterial scavenging: utilization of fatty acids localized at a solid-liquid interface. Archs Microbiol.133 (1982) 257–260.

    CAS  Google Scholar 

  23. Kirchman, D., and Mitchell, R., Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. envir. Microbiol.43 (1982) 200–209.

    CAS  Google Scholar 

  24. Kjelleberg, S., and Stenstrom, T. A., Lipid surface films: interaction of bacteria with free fatty acids and phospholipids at the air/water interface. J. gen. Microbiol.116 (1980) 417–423.

    CAS  Google Scholar 

  25. Lanza, G. R., and Silvey, J. K. G., Interactions of reservoir microbiota: eutrophication-relates environmental problems, in: Microbial Processes in Reservoirs. Ed. D. Gunnison, Dr. W. Junk Publishers, Dordrecht 1985.

    Google Scholar 

  26. Lavie, S., and Stotzky, G., Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration ofHistoplasma capsulatum. Appl. envir. Microbiol.51 (1986) 65–73.

    CAS  Google Scholar 

  27. LeChavalier, M. W., Cawthon, C. D., and Lee, R. G., Factors promoting survival of bacteria in chlorinated water supplies. Appl. environ. Microbiol.54 (1988) 649–654.

    Google Scholar 

  28. Lieberman, O., Ph. D. Thesis. The Hebrew Univ. of Jerusalem, Jerusalem 1989.

  29. Lynch, J. M., and Bragg, E., Microorganisms and soil aggregate stability. Adv. Soil Sci.2 (1985) 133–171.

    Google Scholar 

  30. Mack, W. N., Mack, J. P., and Ackerson, A. O., Microbial film development in a trickling filter. Microb. Ecol.2 (1975) 215–226.

    CAS  PubMed  Google Scholar 

  31. Marshall, K. C., Interfaces in Microbial Ecology, pp. 69–70. Harvard Univ. Press, Cambridge 1976.

    Google Scholar 

  32. Marshall, K. C., Mechanisms of bacterial adhesion at solid-water interfaces, in: Bacterial Adhesion, pp. 133–161. Eds D. L. Savage and M. Fletcher. Plenum Press, New York 1985.

    Google Scholar 

  33. Metting, B., and Rayburn, W. R., The influence of a microalgal conditioner on selected Washington soils: an empirical study. Soil Sci. Soc. Am. J.47 (1983) 682–685.

    Google Scholar 

  34. Mozes, N., Marchal, F., Hermess, M. P., Van Haecht, J. L., Reuliaux, L., Leonard, A. J., and Rouxhet, P. G., Immobilization of microorganisms by adhesion: interplay of electrostatic and nonelectrostatic interactions. Biotechnol. Bioeng.30 (1987) 439–450.

    CAS  PubMed  Google Scholar 

  35. Norkrans, B., Surface microlayers in aquatic environments, in: Advances in Microbial Ecology, vol. 4, pp. 51–85. Ed. M. Alexander. Plenum Press, New York 1980.

    Google Scholar 

  36. Norkrans, B., and Sorensson, F., On the marine lipid surface microlayer-bacterial accumulation in model systems. Bot. mar.20 (1977) 473–478.

    Google Scholar 

  37. Reynolds, C. S., and Walsby, A. E., Water blooms. Biol. Rev.50 (1975) 437–481.

    CAS  Google Scholar 

  38. Rijn van, J., and Shilo, M., Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fishponds. Limnol. Oceanogr.30 (1985) 1219–1228.

    Google Scholar 

  39. Roper, M. M., and Marshall, K. C., Modification of the interaction betweenEscherichia coli and bacteriophage in saline sediment. Microb. Ecol.1 (1974) 1–13.

    CAS  PubMed  Google Scholar 

  40. Rosenberg, M., and Kjelleberg, S., Hydrophobic interactions: role in bacterial adhesion, in: Advances in Microbial Ecology, vol. 9, pp. 353–393. Ed. K. C. Marshall Plenum Press, New York 1986.

    Google Scholar 

  41. Rosenberg, M., and Rosenberg, E., Role of adherence in growth ofAcinetobacter calcoaceticus RAG-1 on hexadecane. J. Bact.148 (1981) 51–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenberg, E., Kaplan, N., Pines, O., Rosenberg, M., and Gutnick, D., Capsular polysaccharides interfere with adherence ofAcinetobacter calcoaceticus to hydrocarbons. FEMS Microbiol. Lett.17 (1983) 157–160.

    CAS  Google Scholar 

  43. Silverman, M. P., Mechanism of bacterial pyrite oxidation. J. Bact.94 (1967) 1046–1051.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Soehngen, N. L., Einfluß von Kolloiden auf mikrobiologische Prozesse. Z. Bakt. Parasit. Infect. 2 Abt.38 (1913) 622–647.

    Google Scholar 

  45. Wiegel, J., and Dykstra, M.,Clostridium thermocellum: adhesion and sporulation while adhered to cellulose and hermicellulose. Appl. Microbiol. Biotechnol.20 (1984) 59–65.

    CAS  Google Scholar 

  46. Winder de, B., Pluis, J., de Ruis, L., and Mur, L. R., Characterization of a cyanobacterial, algal crust in the coastal dunes of the Netherlands, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Am. Soc. Microbiol., Washington 1989.

    Google Scholar 

  47. ZoBell, C. E., The effect of solid surfaces upon bacterial activity. J. Bact.46 (1943) 39–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zohary, T., Hyperscums of the cyanobacteriumMicrocystis aeruginosa in a hypertrophic lake. J. Plankton Res.7 (1985) 399–409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar-Or, Y. The effect of adhesion on survival and growth of microorganisms. Experientia 46, 823–826 (1990). https://doi.org/10.1007/BF01935532

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935532

Key words

Navigation