, Volume 46, Issue 8, pp 817–822 | Cite as

Energetics of bacterial adhesion

  • M. C. M. van Loosdrecht
  • A. J. B. Zehnder


For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized.

Key words

Bacterial adhesion long-range forces short-range forces electrostatic interaction DLVO-theory hydrophobicity surface Gibbs energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbot, A., Rutter, P. R., and Berkeley, R. C. W., The influence of ionic strength, pH and a protein layer on the interaction ofStreptococcus mutans and glass surfaces. J. gen. Microbiol.128 (1983) 439–445.Google Scholar
  2. 2.
    Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., van Oss, C. J., and Neumann, A. W., Surface thermodynamics of bacterial adhesion. Appl. envir. Microbiol.46 (1983) 90–97.Google Scholar
  3. 3.
    Alieva, R. M., Manasbaeva, A. B., and Ilyaletdinov, A. N., Immobilization of microorganisms on a latex in order to obtain an artificial floc. Mikrobiologie55 (1987) 692–699.Google Scholar
  4. 4.
    Brown, C. M., Ellwood, D. C., and Hunter, J. R., Growth of bacteria at surfaces. FEMS Microbiol. Lett.1 (1977) 163–166.CrossRefGoogle Scholar
  5. 5.
    Busscher, H. J., Uijen, M. H. J. W. C., van Pelt, A. W. J., Weerkamp, A. H., and Arends, J., Kinetics of adhesion of the oral bacteriumStreptococcus sanguis CH3 to polymers with different surface free energies. Appl. envir. Microbiol.51 (1986) 910–914.Google Scholar
  6. 6.
    Busscher, H. J., Weerkamp, A. H., van der Mei, H. C., van Pelt, A. W. J., de Jong, H. P., and Arends, J., Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. envir. Microbiol.48 (1984) 980–983.Google Scholar
  7. 7.
    Busscher, H. J., Uyen, M. H. M. J. C., Weerkamp, A. H., Postma, W. J., and Arends, J., Reversibility of adhesion of oralStreptococci to solid surfaces. FEMS Microbiol. Lett.35 (1986) 303–306.CrossRefGoogle Scholar
  8. 8.
    Busscher, H. J., and Weerkamp, A. H., Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev.46 (1987) 165–173.CrossRefGoogle Scholar
  9. 9.
    Camp, H. J. M. op den, Oosterhof, A., and Veerkamp, J. H., Cell surface hydrophobicity ofBifidobacterium bifidum. Antonie van Leeuwenhoek51 (1985) 303–312.PubMedGoogle Scholar
  10. 10.
    Dillon, J. K., Fuerst, J. A., Hayward, A. C., and Davis, G. H. G., A comparison of five methods for assaying bacterial hydrophobicity. J. microbiol. Meth.6 (1986) 13–19.CrossRefGoogle Scholar
  11. 11.
    Edwards, J. G., The biochemistry of cell adhesion. Prog. Surf. Sci.13 (1983) 125–196.CrossRefGoogle Scholar
  12. 12.
    Fattom, A., and Shilo, M., Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. envir. Microbiol.47 (1984) 135–143.Google Scholar
  13. 13.
    Fletcher, M., and Loeb, G. I., Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Appl. envir. Microbiol.37 (1979) 67–72.Google Scholar
  14. 14.
    Fletcher, M., The effect of the culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can. J. Microbiol.23 (1977) 1–6.Google Scholar
  15. 15.
    Fletcher, M., and Pringle, J. H., The effect of surface free energy and medium surface tension on bacterial attachment to solid surfaces. J. Coll. Interf. Sci.104 (1985) 5–13.CrossRefGoogle Scholar
  16. 16.
    Fletcher, M., Attachment ofPseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. Appl. envir. Microbiol.170 (1988) 2027–2030.Google Scholar
  17. 17.
    Gerson, D. F., and Scheer, D., Cell surface energy, contact angles, and phase partition. Biochim. biophys. Acta602 (1980) 269–280.PubMedGoogle Scholar
  18. 18.
    Haecht, J. L. van, Bolipombo, M., and Rouxhet, P. G., Immobilization ofSaccharomyces cerevisiae by adhesion: Treatment of the cells by Al ions. Biotechnol. Bioengng27 (1985) 217–224.CrossRefGoogle Scholar
  19. 19.
    Hamaker, H. C., The London-van der Waals attraction between spherical particles. Physica4 (1937) 1058–1072.Google Scholar
  20. 20.
    Harvey, R. W., George, L. H., Smith, R. L., and leBlanc, D. R., Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments. Envir. Sci. Technol.23 (1989) 51–56.CrossRefGoogle Scholar
  21. 21.
    Heckels, J. E., Blackett, B., Everson, J. S., and Ward, M. E., The influence of surface charge on the attachment ofNeisseria gonorrhoeae to human cells. J. gen. Microbiol.96 (1976) 359–364.PubMedGoogle Scholar
  22. 22.
    Hermansson, M., Kjelleberg, S., Korhonen, T. K., and Stenstrom, T., Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air-water interface. Archs Microbiol.131 (1982) 308–312.CrossRefGoogle Scholar
  23. 23.
    Jones, G. W., and Isaacson, R. E., Proteinaceous bacterial adhesins and their receptors. CRC crit. Rev. Microbiol.10 (1984) 229–265.Google Scholar
  24. 24.
    Kharnair, D., The effect of chemical competition on thermodynamics of bacterial adsorption. PhD Thesis, Utah, USA 1971.Google Scholar
  25. 25.
    Kjelleberg, S., Lagercrantz, C., and Larson, Th., Quantitative analysis of bacterial hydrophobicity studied by binding of dodecanoic acid. FEMS Microbiol. Lett.7 (1980) 41–44.Google Scholar
  26. 26.
    Lindahl, M., Faris, A., Wadstrom, T., and Hjerten, S., A new test based on ‘salting out’ to measure relative surface hydrophobicity of bacterial cells. Biochim. biophys. Acta677 (1981) 471–476.PubMedGoogle Scholar
  27. 27.
    Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., The role of bacterial cell wall hydrophobicity in adhesion. Appl. envir. Microbiol.53 (1987) 1893–1897.Google Scholar
  28. 28.
    Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. envir. Microbiol.53 (1987) 1898–1901.Google Scholar
  29. 29.
    Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., and Zehnder, A. J. B., Bacterial adhesion: a physico chemical approach. Microb. Ecol.17 (1989) 1–27.Google Scholar
  30. 30.
    Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., and Zehnder, A. J. B., Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat. Chem.52 (1990) 103–114.CrossRefGoogle Scholar
  31. 31.
    Lyklema, J., Norde, W., van Loosdrecht, M. C. M., and Zehnder, A. J. B., Adhesion of bacteria to polystyrene surfaces. Colloids Surfaces39 (1989) 175–187.CrossRefGoogle Scholar
  32. 32.
    Malmqvist, T., Bacterial hydrophobicity measured as partition of palmitic acid between the two immiscible phases of cell surface and buffer. Acta path. microbiol. immun. scand.B 91 (1983) 69–73.Google Scholar
  33. 33.
    Marshall, K. C., Stout, R., and Mitchell, R., Mechanisms of the initial events in the sorption of marine bacteria to surfaces. J. gen. Microbiol.68 (1971) 337–348.Google Scholar
  34. 34.
    Marshall, K. C., Microbial adhesion and aggregation. Berlin, Springer Verlag 1984.Google Scholar
  35. 35.
    Matthyse, A. G., Holmes, K. V., and Gurlitz, R. W. G., Elaboration of cellulose fibrils byAgrobacterium tumefaciens during attachment to carrot cells. J. Bact.145 (1981) 583–595.PubMedGoogle Scholar
  36. 36.
    Mei, H. C., van der, Weerkamp, A. H., and Busscher, H. J., Physicochemical surface characteristics and adhesive properties ofStreptococcus salivarius strains with defined cell surface structures. FEMS Microbiol. Lett.40 (1987) 15–19.CrossRefGoogle Scholar
  37. 37.
    Mozes, N., and Rouxhet, P. G., Methods for measuring hydrophobicity of microorganisms. J. microbiol. Meth.6 (1987) 99–112.CrossRefGoogle Scholar
  38. 38.
    Neumann, A. W., Good, R. J., Hope, C. J., and Sejpal, M., An equation of state approach to determine surface tensions of low energy solids from contact angles. J. Coll. Interf. Sci.49 (1974) 291–304.CrossRefGoogle Scholar
  39. 39.
    Nir, S., Van der Waals interactions between surfaces of biological interest. Progr. Surf. Sci.8 (1976) 1–58.CrossRefGoogle Scholar
  40. 40.
    Noda, Y., and Kanemasa, Y., Determination of hydrophobicity on bacterial surfaces by nonionic surfactants. J. Bact.167 (1986) 1016–1019.PubMedGoogle Scholar
  41. 41.
    Preston, T. M., and King, C. A., Amoeboid locomotion ofAcanthamoeba castellanii with special reference to cell substratum interactions. J. gen. Microbiol.130 (1984) 2317–2323.PubMedGoogle Scholar
  42. 42.
    Pringle, J. H., Fletcher, M., and Ellwood, D. C., Selection of attachment mutants during the continuous culture ofPseudomonas fluorescens and relationship between attachment ability and surface composition. J. gen. Microbiol.129 (1983) 2557–2569.Google Scholar
  43. 43.
    Rosenberg, M., and Kjelleberg, S., Hydrophobic interactions: role in bacterial adhesion. Adv. microb. Ecol.9 (1986) 353–393.Google Scholar
  44. 44.
    Rosenberg, M., Bacterial adhesion to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett.22 (1984) 289–295.CrossRefGoogle Scholar
  45. 45.
    Rutter, P. R., and Vincent, B., Physico chemical interactions of the substratum, microorganisms and the fluid phase, in: Microbial Adhesion and Aggregation, pp. 21–38. Ed. K. C. Marshall. Springer Verlag, Berlin 1984.Google Scholar
  46. 46.
    Sar, N., Direction of spreading (DOS): a simple method for measuring the hydrophobicity of bacterial lawns. J. microbiol. Meth.6 (1987) 211–219.CrossRefGoogle Scholar
  47. 47.
    Sie, T. L., Flotation der Microorganismen in einer Laboranlage. PhD Thesis, Hannover, FRG 1985.Google Scholar
  48. 48.
    Stendahl, O., Tagesson, C., and Edebo, M., Partition ofSalmonella typhimurium in a two-polymer aqueous phase system in relation to liability to phagocytosis. Infect. Immun.8 (1973) 36–41.PubMedGoogle Scholar
  49. 49.
    Visser, J., On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Adv. Coll. Interf. Sci.3 (1972) 331–363.CrossRefGoogle Scholar
  50. 50.
    Wrangstadh, M., Conway, P. L., and Kjelleberg, S., The production of an extracellular polysaccharide during starvation of a marinePseudomonas sp. and the effect thereof on adhesion. Archs Microbiol.145 (1986) 220–227.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1990

Authors and Affiliations

  • M. C. M. van Loosdrecht
    • 1
  • A. J. B. Zehnder
    • 2
  1. 1.Kluyverlaboratorium for BiotechnologyDelft University of TechnologyDelft(The Netherlands)
  2. 2.Dept of MicrobiologyWageningen Agricultural UniversityWageningen(The Netherlands)

Personalised recommendations