Skip to main content
Log in

Energetics of bacterial adhesion

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbot, A., Rutter, P. R., and Berkeley, R. C. W., The influence of ionic strength, pH and a protein layer on the interaction ofStreptococcus mutans and glass surfaces. J. gen. Microbiol.128 (1983) 439–445.

    Google Scholar 

  2. Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., van Oss, C. J., and Neumann, A. W., Surface thermodynamics of bacterial adhesion. Appl. envir. Microbiol.46 (1983) 90–97.

    CAS  Google Scholar 

  3. Alieva, R. M., Manasbaeva, A. B., and Ilyaletdinov, A. N., Immobilization of microorganisms on a latex in order to obtain an artificial floc. Mikrobiologie55 (1987) 692–699.

    Google Scholar 

  4. Brown, C. M., Ellwood, D. C., and Hunter, J. R., Growth of bacteria at surfaces. FEMS Microbiol. Lett.1 (1977) 163–166.

    CAS  Google Scholar 

  5. Busscher, H. J., Uijen, M. H. J. W. C., van Pelt, A. W. J., Weerkamp, A. H., and Arends, J., Kinetics of adhesion of the oral bacteriumStreptococcus sanguis CH3 to polymers with different surface free energies. Appl. envir. Microbiol.51 (1986) 910–914.

    CAS  Google Scholar 

  6. Busscher, H. J., Weerkamp, A. H., van der Mei, H. C., van Pelt, A. W. J., de Jong, H. P., and Arends, J., Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. envir. Microbiol.48 (1984) 980–983.

    CAS  Google Scholar 

  7. Busscher, H. J., Uyen, M. H. M. J. C., Weerkamp, A. H., Postma, W. J., and Arends, J., Reversibility of adhesion of oralStreptococci to solid surfaces. FEMS Microbiol. Lett.35 (1986) 303–306.

    CAS  Google Scholar 

  8. Busscher, H. J., and Weerkamp, A. H., Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev.46 (1987) 165–173.

    CAS  Google Scholar 

  9. Camp, H. J. M. op den, Oosterhof, A., and Veerkamp, J. H., Cell surface hydrophobicity ofBifidobacterium bifidum. Antonie van Leeuwenhoek51 (1985) 303–312.

    Google Scholar 

  10. Dillon, J. K., Fuerst, J. A., Hayward, A. C., and Davis, G. H. G., A comparison of five methods for assaying bacterial hydrophobicity. J. microbiol. Meth.6 (1986) 13–19.

    CAS  Google Scholar 

  11. Edwards, J. G., The biochemistry of cell adhesion. Prog. Surf. Sci.13 (1983) 125–196.

    CAS  Google Scholar 

  12. Fattom, A., and Shilo, M., Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. envir. Microbiol.47 (1984) 135–143.

    CAS  Google Scholar 

  13. Fletcher, M., and Loeb, G. I., Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Appl. envir. Microbiol.37 (1979) 67–72.

    CAS  Google Scholar 

  14. Fletcher, M., The effect of the culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can. J. Microbiol.23 (1977) 1–6.

    Google Scholar 

  15. Fletcher, M., and Pringle, J. H., The effect of surface free energy and medium surface tension on bacterial attachment to solid surfaces. J. Coll. Interf. Sci.104 (1985) 5–13.

    Google Scholar 

  16. Fletcher, M., Attachment ofPseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. Appl. envir. Microbiol.170 (1988) 2027–2030.

    CAS  Google Scholar 

  17. Gerson, D. F., and Scheer, D., Cell surface energy, contact angles, and phase partition. Biochim. biophys. Acta602 (1980) 269–280.

    CAS  PubMed  Google Scholar 

  18. Haecht, J. L. van, Bolipombo, M., and Rouxhet, P. G., Immobilization ofSaccharomyces cerevisiae by adhesion: Treatment of the cells by Al ions. Biotechnol. Bioengng27 (1985) 217–224.

    Google Scholar 

  19. Hamaker, H. C., The London-van der Waals attraction between spherical particles. Physica4 (1937) 1058–1072.

    CAS  Google Scholar 

  20. Harvey, R. W., George, L. H., Smith, R. L., and leBlanc, D. R., Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments. Envir. Sci. Technol.23 (1989) 51–56.

    CAS  Google Scholar 

  21. Heckels, J. E., Blackett, B., Everson, J. S., and Ward, M. E., The influence of surface charge on the attachment ofNeisseria gonorrhoeae to human cells. J. gen. Microbiol.96 (1976) 359–364.

    CAS  PubMed  Google Scholar 

  22. Hermansson, M., Kjelleberg, S., Korhonen, T. K., and Stenstrom, T., Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air-water interface. Archs Microbiol.131 (1982) 308–312.

    CAS  Google Scholar 

  23. Jones, G. W., and Isaacson, R. E., Proteinaceous bacterial adhesins and their receptors. CRC crit. Rev. Microbiol.10 (1984) 229–265.

    Google Scholar 

  24. Kharnair, D., The effect of chemical competition on thermodynamics of bacterial adsorption. PhD Thesis, Utah, USA 1971.

  25. Kjelleberg, S., Lagercrantz, C., and Larson, Th., Quantitative analysis of bacterial hydrophobicity studied by binding of dodecanoic acid. FEMS Microbiol. Lett.7 (1980) 41–44.

    CAS  Google Scholar 

  26. Lindahl, M., Faris, A., Wadstrom, T., and Hjerten, S., A new test based on ‘salting out’ to measure relative surface hydrophobicity of bacterial cells. Biochim. biophys. Acta677 (1981) 471–476.

    CAS  PubMed  Google Scholar 

  27. Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., The role of bacterial cell wall hydrophobicity in adhesion. Appl. envir. Microbiol.53 (1987) 1893–1897.

    Google Scholar 

  28. Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. envir. Microbiol.53 (1987) 1898–1901.

    Google Scholar 

  29. Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., and Zehnder, A. J. B., Bacterial adhesion: a physico chemical approach. Microb. Ecol.17 (1989) 1–27.

    PubMed  Google Scholar 

  30. Loosdrecht, M. C. M. van, Lyklema, J., Norde, W., and Zehnder, A. J. B., Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat. Chem.52 (1990) 103–114.

    Google Scholar 

  31. Lyklema, J., Norde, W., van Loosdrecht, M. C. M., and Zehnder, A. J. B., Adhesion of bacteria to polystyrene surfaces. Colloids Surfaces39 (1989) 175–187.

    Google Scholar 

  32. Malmqvist, T., Bacterial hydrophobicity measured as partition of palmitic acid between the two immiscible phases of cell surface and buffer. Acta path. microbiol. immun. scand.B 91 (1983) 69–73.

    CAS  Google Scholar 

  33. Marshall, K. C., Stout, R., and Mitchell, R., Mechanisms of the initial events in the sorption of marine bacteria to surfaces. J. gen. Microbiol.68 (1971) 337–348.

    CAS  Google Scholar 

  34. Marshall, K. C., Microbial adhesion and aggregation. Berlin, Springer Verlag 1984.

    Google Scholar 

  35. Matthyse, A. G., Holmes, K. V., and Gurlitz, R. W. G., Elaboration of cellulose fibrils byAgrobacterium tumefaciens during attachment to carrot cells. J. Bact.145 (1981) 583–595.

    Google Scholar 

  36. Mei, H. C., van der, Weerkamp, A. H., and Busscher, H. J., Physicochemical surface characteristics and adhesive properties ofStreptococcus salivarius strains with defined cell surface structures. FEMS Microbiol. Lett.40 (1987) 15–19.

    Google Scholar 

  37. Mozes, N., and Rouxhet, P. G., Methods for measuring hydrophobicity of microorganisms. J. microbiol. Meth.6 (1987) 99–112.

    Google Scholar 

  38. Neumann, A. W., Good, R. J., Hope, C. J., and Sejpal, M., An equation of state approach to determine surface tensions of low energy solids from contact angles. J. Coll. Interf. Sci.49 (1974) 291–304.

    CAS  Google Scholar 

  39. Nir, S., Van der Waals interactions between surfaces of biological interest. Progr. Surf. Sci.8 (1976) 1–58.

    Google Scholar 

  40. Noda, Y., and Kanemasa, Y., Determination of hydrophobicity on bacterial surfaces by nonionic surfactants. J. Bact.167 (1986) 1016–1019.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Preston, T. M., and King, C. A., Amoeboid locomotion ofAcanthamoeba castellanii with special reference to cell substratum interactions. J. gen. Microbiol.130 (1984) 2317–2323.

    CAS  PubMed  Google Scholar 

  42. Pringle, J. H., Fletcher, M., and Ellwood, D. C., Selection of attachment mutants during the continuous culture ofPseudomonas fluorescens and relationship between attachment ability and surface composition. J. gen. Microbiol.129 (1983) 2557–2569.

    CAS  Google Scholar 

  43. Rosenberg, M., and Kjelleberg, S., Hydrophobic interactions: role in bacterial adhesion. Adv. microb. Ecol.9 (1986) 353–393.

    CAS  Google Scholar 

  44. Rosenberg, M., Bacterial adhesion to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett.22 (1984) 289–295.

    CAS  Google Scholar 

  45. Rutter, P. R., and Vincent, B., Physico chemical interactions of the substratum, microorganisms and the fluid phase, in: Microbial Adhesion and Aggregation, pp. 21–38. Ed. K. C. Marshall. Springer Verlag, Berlin 1984.

    Google Scholar 

  46. Sar, N., Direction of spreading (DOS): a simple method for measuring the hydrophobicity of bacterial lawns. J. microbiol. Meth.6 (1987) 211–219.

    Google Scholar 

  47. Sie, T. L., Flotation der Microorganismen in einer Laboranlage. PhD Thesis, Hannover, FRG 1985.

  48. Stendahl, O., Tagesson, C., and Edebo, M., Partition ofSalmonella typhimurium in a two-polymer aqueous phase system in relation to liability to phagocytosis. Infect. Immun.8 (1973) 36–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Visser, J., On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Adv. Coll. Interf. Sci.3 (1972) 331–363.

    CAS  Google Scholar 

  50. Wrangstadh, M., Conway, P. L., and Kjelleberg, S., The production of an extracellular polysaccharide during starvation of a marinePseudomonas sp. and the effect thereof on adhesion. Archs Microbiol.145 (1986) 220–227.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Loosdrecht, M.C.M., Zehnder, A.J.B. Energetics of bacterial adhesion. Experientia 46, 817–822 (1990). https://doi.org/10.1007/BF01935531

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935531

Key words

Navigation