Skip to main content
Log in

The potential significance of microbial activity in radioactive waste disposal

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Active microorganisms can exist in any proposed environment if the basic requirements for life are satisfied, i.e. a suitable temperature and pH, the presence of the necessary nutrients and water. If conditions are not favourable microbes may survive in a dormant state until a change will allow activity. In local pockets microenvironments may become established where microbial activity may increase leading to altered environmental conditions and to changes in the near-field, e.g. degradation and breakdown of barriers, gas generation and/or uptake and transport of nuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, M., Microbial Ecology, John Wiley and Sons, Inc., Toronto 1971.

    Google Scholar 

  2. Allard, B., Larson, S. A., Tullborg, E. L., and Wikberg, P., Chemistry of deep groundwaters from granite bedrock. KBS-TR-83-59, 1983.

  3. Avogardro, A., and de Marsily, G., The role of colloids in nuclear waste disposal, in: Materials Research Society 26, pp. 495–505. Ed. G. L. McVay. Scientific Basis for Nuclear Waste Management VII. New York 1983.

    Google Scholar 

  4. Ballester, A., Bláquez, M., González, F., and Barrill, M. A., Bioleaching of a lead matte, in: Bio Hydro Metallurgy, Proc. International Symposium Warwick 1987, pp. 508–509. Eds P. R. Norris and D. P. Kelly. Science and Technology Letters, Kew 1988.

    Google Scholar 

  5. Beveridge, T. J., Role of cellular design in bacterial metal accumulation and mineralisation. A. Rev. Microbiol.43 (1989) 147–171.

    CAS  Google Scholar 

  6. Beveridge, T. J., and Murray, R. G. E., Uptake and retention of metals by cell walls ofBacillus subtilis. J. Bact.127 (1976) 1502–1518.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Beveridge, T. J., and Murray, R. G. E., Sites of metal deposition in the cell wall ofBacillus subtilis. J. Bact.141 (1980) 876–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Birch, L., and Bachofen, R., Effects of microorganisms on the environmental mobility of radionuclides. Soil Biochem.6 (1990) 483–527.

    CAS  Google Scholar 

  9. Birch, L., and Bachofen, R., Effects of microorganisms on the environmental mobility of radionuclides. Experientia46 (1990) 827–834.

    CAS  Google Scholar 

  10. Bossier, P., Hofte, M., and Verstraete, W., Ecological significance of siderophores in soil. Adv. microb. Ecol.10 (1988) 385–414.

    CAS  Google Scholar 

  11. Bridges, B., Survival of bacteria following exposure to ultraviolet and ionizing radiations, in The Survival of Vegetative Microbes, pp. 183–208. Eds T. R. G. Gray and J. R. Postgate. Cambridge University Press, Cambridge 1976.

    Google Scholar 

  12. Brierley, C. L., Bacterial leaching. CRC Crit. Rev. Microbiol.6 (1978) 207–262.

    CAS  PubMed  Google Scholar 

  13. Brock, T. D., Smith, D. W., and Madigan, M. T., Biology of microorganisms. Prentice Hall, Englewood Cliffs, N.J., 1984.

    Google Scholar 

  14. Brunner, C., Wolf, M., and Bachofen, R., Enrichment of bitumen-degrading microorganisms. FEMS Microbiol. Lett.43 (1987) 337–344.

    CAS  Google Scholar 

  15. Buckley, L. P., Clegg, B. C., and Oldham, W. K., Microbial activity in bituminized radioactive waste, in: Radioactive Waste Management and The Nuclear Fuel Cycle, Vol. 6, pp. 19–36 (1985).

  16. Cameron, R. E., Honour, R. C., and Morelli, F. A., Antarctic microbiology—preparation for Mars life detection, quarantine and back contamination, in: Extreme Environments, Mechanisms of Microbial Adaption, pp. 57–82. Ed. M. R. Heinrich. Academic Press, London 1976.b

    Google Scholar 

  17. Colberg, P. J., Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives, in: Biology of Anaerobic Microorganisms, pp. 333–372. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  18. Cristofi, N., and Philp, J. C., Microbiology of subterranean waste sites. Experientia (1990) in press.

  19. Daniels, S. L., Mechanisms involved in sorption of microorganisms to solid surfaces, in: Adsorption of Microorganisms to Surfaces, pp. 7–58. Eds G. Bitton and K. C. Marshall, Wiley-Interscience, New York 1980.

    Google Scholar 

  20. Dayal, R., Pietrzak, R. F., and Clinton, J., Geochemistry of trench leachate at low-level radioactive waste burial sites. Intl. Assn. Hydrogeologists, Groundwater Intl. Symp. Montreal 1984, p. 336.

  21. De Serres, F. J., Some aspects of the influence of environment on the radiosensitivity of microorganisms, in: Microbial Reaction to Environment, pp. 196–216. Eds G. G. Meynell and H. Gooder. University Press, Cambridge 1961.

    Google Scholar 

  22. Edwards, C., Thermophiles, in: Microbiology of Extreme Environments, pp. 1–32. Ed C. Edwards. Open University Press, Milton Keynes 1990.

    Google Scholar 

  23. Ehrlich, H. L., How microbes cope with heavy metals, arsenic and antimony in their environment, in: Microbial Life in Extreme Environments, pp. 381–408. Ed D. J. Kushner. Academic Press, London 1978.

    Google Scholar 

  24. Ehrlich, H. L., Geomicrobiology. Marcel Dekker Inc., New York and Basel 1981.

    Google Scholar 

  25. Emery, T., Iron metabolism in humans and plants. Am. Sci.70 (1982) 626–632.

    CAS  PubMed  Google Scholar 

  26. Francis, A. J., Dobbs, S., and Nine, B. J., Microbial activity of trench leachate from shallow land low-level radioactive waste disposal sites. Appl. envir. Microbiol.40 (1980) 108–113.

    CAS  Google Scholar 

  27. Fry, J. C., Oligotrophs, in: Microbiology of Extreme Environments, pp. 93–116. Ed. C. Edwards. Open University Press, Milton Keynes 1990.

    Google Scholar 

  28. Gadd, G. M., Fungal responses towards heavy metals, in: Microbes in Extreme Environments, pp. 83–110. Eds R. A. Herbert and G. A. Codd. Academic Press, London 1986.

    Google Scholar 

  29. Gadd, G. M., White, C., and de Rome, L., Heavy metal, and radionuclide uptake by fungi and yeasts, in: Bio Hydro Metallurgy, Proc. International Symposium Warwick 1987, pp. 421–435, Eds P. R. Norris and D. P. Kelly. Science and Technology Letters, Kew 1988.

    Google Scholar 

  30. Gadd, G. M., Metal tolerance, in: Microbiology of Extreme Environments, pp. 178–210. Ed. C. Edwards. Open University Press, Milton Keynes 1990.

    Google Scholar 

  31. Galun, M., Keller, P., Malki, D., Feldstein, H., Galun, E., Siegel, S. M., and Siegel, B. Z., Removal of uranium (IV) from solution by fungal biomass and fungal wall-related biopolymers. Science219 (1983) 285–286.

    CAS  PubMed  Google Scholar 

  32. Ghiorse, W. C., Microbial reduction of manganese and iron, in: Biology of anaerobic microorganisms, pp. 305–332. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  33. Ghiorse, W. C., and Wilson, J. T., Microbial ecology of the terrestrial subsurface. Adv. appl. Microbiol.33 (1988) 107–172.

    CAS  PubMed  Google Scholar 

  34. Grant, W. D., and Tindall, B. J., The alkaline saline environment, in: Microbes in Extreme Environments, pp. 25–54. Eds A. Herbert and G. A. Codd. Academic Press, London 1986.

    Google Scholar 

  35. Griffin, D. M., and Luard, E. J., Water stress and microbial ecology, in: Strategies of Microbial Life in Extreme Environments, pp. 49–63. Ed. M. Shilo, Verlag Chemie, Weinheim 1979.

    Google Scholar 

  36. Hallas L. E., Means, J. C., and Cooney, J. J., Methylation of tin by estuarine microorganisms. Science215 (1982) 1505–1507.

    CAS  PubMed  Google Scholar 

  37. Herbert, R. A., The ecology and physiology of psychrophilic microorganisms, in: Microbes in Extreme Environments, pp. 1–24. Eds R. A. Herbert and G. A. Codd. Academic Press, London 1986.

    Google Scholar 

  38. Horikoshi, K., and Akiba, T., Alkalophilic Microorganisms—a New Microbial World. Japan Scientific Societies Press. Springer-Verlag, Tokyo 1982.

    Google Scholar 

  39. Horikoshi, K., Nakojima, T. A., and Sakaguchi, T., Uptake of uranium by various cell fractions ofChlorella vulgaris. Radioisotopes28 (1979) 485–488.

    CAS  PubMed  Google Scholar 

  40. Jackson, K. S., Jonasson, I. R., and Skippen, G. B., The nature of metals-sediment-water interactions in fresh water bodies with emphasize on the role of organic matter. Earth Sci. Rev.14 (1978) 97–146.

    CAS  Google Scholar 

  41. Jackson, R. E., Adsorption of radionuclides in a fluvial-sand aquifer, in: Contaminants and Sediments (R. A. Baker, ed) 1, 311–329 (1980).

  42. Jilsk, R., Prochazka, H., Stamberg, K., Katzer, J., and Nemec, P., Some properties and developments of cultivated biosorbent. Rudy23 (1975) 282–286.

    Google Scholar 

  43. Justyn, J., and Stanek, Z., Accumulation of natural radionuclides in the bottom sediments and by aquatic organisms of streams. Int. Revue ges Hydrobiol., Prague54 (1974) 593–609.

    Google Scholar 

  44. Kaiser, J. P., and Bollag, J. M., Microbial activity in the terrestrial subsurface. Experientia46 (1990) 797–806.

    CAS  Google Scholar 

  45. Kelly, D. P., Evolution of the understanding of the microbiology and biochemistry of the mineral leaching habitat, in: Bio Hydro Metallurgy, Proc. International Symposium Warwick 1987, pp. 3–14. Eds P. R. Norris and D. P. Kelly. Science and Technology Letters, Kew 1988.

    Google Scholar 

  46. Khalid, Z. M., Mahmood, T., and Malik, K. A., Leaching of a carbonate-bearing uranium ore with a selected strain ofThiobacillus thiooxidans, in: Bio Hydro Metallurgy, Proc. International Symposium Warwick 1987, p. 524. Eds P. R. Norris and D. P. Kelly. Science and Technology Letters, Kew 1988.

    Google Scholar 

  47. Kiel, H., and Schwartz, W., Leaching of a silicate and carbonate copper ore with heterotrophic fungi and bacteria, producing organic acids. Z. allg. Mikrobiol.20 (1980) 627–636.

    CAS  PubMed  Google Scholar 

  48. Koch, A. L., Microbial growth in low concentrations of nutrients, in: Strategies of Microbial Life in Extreme Environments, pp. 261–279. Ed. M. Shilo. Verlag Chemie, Weinheim 1979.

    Google Scholar 

  49. Konetska, W. A., Microbiology of metal transformations, in: Microorganisms and Minerals, pp. 317–342. Ed. E. D. Weinberg. Marcel Dekker Inc., New York,1977.

    Google Scholar 

  50. Kroll, R. G., Alkalophiles, in: Microbiology of Extreme Environments, pp. 55–92. Ed. C. Edwards Open University Press, Milton Keynes 1990.

    Google Scholar 

  51. Loutit, M. W., Aislabie, J., Bremer, P., and Pillidge, C., Bacteria and chromium in marine sediments. Adv. microb. Ecol.10 (1988) 415–438.

    CAS  Google Scholar 

  52. Lundgren, D. G., Vestaland, J. R., and Tabita, F. R., The microbiology of mine drainage pollution, in: Water Pollution Microbiology, pp. 69–88. Ed. R. Mitchell. Wiley-Interscience, New York 1972.

    Google Scholar 

  53. Luoma, S. N., Biovailability of trace metals to aquatic organisms. A review. Sci. tot. Envir.28 (1983) 1–22.

    CAS  Google Scholar 

  54. Lynch, J. M., and Hobbie, J. E., Microorganisms in Action: Concepts and Applications in Microbial Ecology. Blackwell Scientific Publications, Oxford 1988.

    Google Scholar 

  55. Macaskie, L. E., and Dean, A. C. R., Uranium accumulation by immobilized biofilms of aCitrobacter sp., in: Bio Hydro Metallurgy, Proc. International Symposium Warwick 1987, pp. 556–557. Eds P. R. Norris and D. P. Kelly. Science and Technology Letters, Kew 1988.

    Google Scholar 

  56. MacGregor, R. A., Recovery of U3O8 by underground leaching. Can. Min. Metall. Bull.59 (1966) 583–587.

    CAS  Google Scholar 

  57. Marquis, R. E., and Matsumura, P., Microbial life under pressure, in: Microbial Life in Extreme Environments, pp. 105–158. Ed. D. J. Kushner. Academic Press, London 1978.

    Google Scholar 

  58. Marquis, R. E., Microbial barobiology. Bio Science32 (1982) 267–271.

    Google Scholar 

  59. Marshall, K. C. Growth at interfaces in: Strategies of Microbial Life in Extreme Environments, pp. 281–290. Ed. M. Shilo. Verlag Chemie, Weinheim 1979.

    Google Scholar 

  60. McInerney, M. J., Anaerobic hydrolysis and fermentation of fats and proteins, in: Biology of Anaerobic Microorganisms, pp. 373–416. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  61. McKinley, I. G., West, J. M., and Grogan, H. A., An analytical overview of the consequences of microbial activity in a Swiss HLW repository. EIR-Bericht 562 (1985).

  62. McNabb, J. F., and Dunlap, W. F., Subsurface biological activity in relation to groundwater pollution. Groundwater13 (1975) 33–44.

    Google Scholar 

  63. Means, J. L., Migration of radioactive wastes: Radionuclide mobilization by complexing agents. Science200 (1978) 1477–1481.

    CAS  PubMed  Google Scholar 

  64. Morgan, P., and Dow, C. S., Bacterial adaptions for growth in low nutrient environments, in: Microbes in Extreme Environments, pp. 187–214. Eds R. A. Herbert and G. A. Codd. Academic Press, London 1986.

    Google Scholar 

  65. Morita, R. Y., Pressure as an extreme environment, in: Microbes in Extreme Environments, pp 171–186. Eds R. A. Herbert and G. A. Codd. Academic Press, London 1986.

    Google Scholar 

  66. Nasim, A., and James, A. P., Life under conditions of high irradiation, in: Microbial Life in Extreme Environments, pp. 409–439. Ed. D. J. Kushner Academic Press, London 1978.

    Google Scholar 

  67. Novik, R. P., Murphy, E., Gryczan, T. J., Baron, E., and Edelman, I., Penicillinase plasmids ofStaphylococcus aureus: Restriction-deletion maps. Plasmid2 (1979) 109–129.

    Google Scholar 

  68. Oremland, R. S., Biogeochemistry of methanogenic bacteria, in: Biology of Anaerobic Microorganisms, pp. 641–706. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  69. Phillip, M., Fedorak, D., Westlake, W. S., Anders, C., Krotochvil, B., Motkosky, N., Anderson, W. B., and Huck, P. M., Microbial release of226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes. Appl. envir. Microbiol.52 (1986) 262–268.

    Google Scholar 

  70. Rees, J. F., The fate of carbon compounds in the landfill disposal of organic matter. J. chem. Technol. Biotechnol.30 (1980) 161–175.

    CAS  Google Scholar 

  71. Roffey, R., Biodegradation of bitumen used for nuclear waste disposal. Experientia46 (1990) in press.

  72. Rothstein, A., and Meyer, R., The relationship of the cell surface to metabolism. IV. The chemical nature of uranium-complexing groups of the cell surface. J. cell comp. Physiol.38 (1951) 245–270.

    CAS  PubMed  Google Scholar 

  73. Schink, B., Principles and limits of anaerobic degradation: Environmental and technological aspects, in: Biology of Anaerobic Microorganisms, pp. 771–846. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  74. Smith, D. W., Water relations of microorganisms in nature, in: Microbial Life in Extreme Environments, pp. 369–380. Ed. D. J. Kushner. Academic Press, London 1978.

    Google Scholar 

  75. Stetter, K. O., Fiala, G., Huber, R., Huber, G., and Segerer, A., Life above the boiling point of water? Experientia42 (1986) 1187–1192.

    Google Scholar 

  76. Stouthamer, A. H., Dissimilatory reduction of oxidized nitrogen compounds, in: Biology of Anaerobic Microorganisms, pp. 245–304. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  77. Strandberg, G. W., Shumate, S. E. II, and Parrott, J. R. Jr, Microbial cells as biosorbents for heavy metals. Accumulations of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl. envir. Microbiol.41 (1981) 237–245.

    CAS  Google Scholar 

  78. Thauer, R. K., Jungermann, K., and Decker, K., Energy conservation in chemotrophic bacteria. Bact. Rev.41 (1977) 100–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tiedje, J. M., Ecology of denitrification and dissimilatory nitrate reduction to ammonium, in: Biology of Anaerobic Microorganisms, pp. 179–244. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  80. Tsezos, M., The performance of a new biological adsorbent for metal recovery. Modeling and experimental results, in: Bio Hydro Metallurgy, Proc. International Symposium Warwick 1987, pp. 465–475. Eds P. R. Norris and D. P. Kelly. Science and Technology Letters, Kew 1988.

    Google Scholar 

  81. Unsworth, B. A., Cross, T., Seaward, M. R. D., and Simms, R. E., The longevity of thermoactinomycete endospores in natural substrates. J. appl. Bact.42 (1977) 45–52.

    CAS  Google Scholar 

  82. Wainwright, M., Singleton, I., and Edyvean, R. G. J., Use of fungal mycelium to adsorb particulates from solution, in: Bio Hydro Metallurgy, Proc. International Symposium Warwick 1987, pp. 499–502. Eds P. R. Norris and D. P. Kelly. Science and Technology Letters, Kew 1988.

    Google Scholar 

  83. West, J. M., and Arme, S. C., Geomicrobiology and its relevance to nuclear waste disposal — a further annotated bibliography. BSG Report FLPU 84-9 (1984).

  84. Welker, N. E., Microbial endurance and resistance to heat stress, in: The Survival of Vegetative Microbes, pp. 241–277. Eds T. R. G. Gray and J. R. Postgate. Cambridge University Press, Cambridge 1976.

    Google Scholar 

  85. Widdel, F., Microbiology and ecology of sulfate- and sulfur-reducing bacteria, in: Biology of Anaerobic Microorganisms, pp. 469–586. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

  86. Wolf, M., and Bachofen, R., Microbial degradation of bitumen. Experientia (1990) in press.

  87. Wood, J. M., and Wang, H. K., Microbial resistance to heavy metals. Envir. Sci. Technol.17 (1983) 582A-590A.

    CAS  Google Scholar 

  88. Zajic, J. E., Microbial Biogeochemistry. Academic Press Inc. New York 1969.

    Google Scholar 

  89. Zajic, J. E., Gerson, D. F., and Camp, S. E., Biodegradation of asphaltenes and other hydrocarbons byPseudomonas. Canad. Fed. biol. Soc.12 (1977) 33–43.

    Google Scholar 

  90. Zehnder, A. J. B., and Svensson, B. H., Life without oxygen: what can and what cannot? Experientia42 (1986) 1197–1205.

    CAS  PubMed  Google Scholar 

  91. Zehnder, A. J. B., and Stumm, W., Geochemistry and biogeochemistry of anaerobic habitats, in: Biology of Anaerobic Microorganisms, pp. 1–38. Ed. A. J. B. Zehnder. Wiley, New York 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCabe, A. The potential significance of microbial activity in radioactive waste disposal. Experientia 46, 779–787 (1990). https://doi.org/10.1007/BF01935524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935524

Key words

Navigation